0
RESEARCH PAPERS: Mechanisms Papers

A Survey of One Class of 7-Jointed Serially Connected Robots: Type-Synthesis to Obtain Controllably Dexterous Workspace

[+] Author and Article Information
J. K. Davidson

Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, Arizona 85287

J. Mech., Trans., and Automation 111(2), 163-175 (Jun 01, 1989) (13 pages) doi:10.1115/1.3258980 History: Received March 01, 1988; Online November 19, 2009

Abstract

A type-synthesis process, which is based on screw theory and geometry, is developed to identify certain robots, each of which can provide controllably dexterous workspace of a tool-point. The identification process is confined to only those robots which control the motion of the end-effector with seven series-connected joints, the axes for the outermost three of which are concurrent. Forty six types of robots are so identified, and, for each, the results are (i) a suitable kinematic chain for the arm and (ii) suitable angle-dimensions for the links of the arm, where the angle-choices are limited to the values 0, ± π/2, and π. A geometric description of the dominant function for control is included. The same kinematic chains are surveyed for all possible parallel and right-angle arrangements of adjacent axes in the four links of the arm. Again utilizing screw theory, 160 robots are identified which do not posses full-cycle axis-dependence among some or all of the first five axes.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In