RESEARCH PAPERS: Power Transmission and Gearing Papers

Effects of Bearing Offset and Flexibility on the Mesh Force Distribution of Spiral Bevel Gears

[+] Author and Article Information
W. D. Mark

BBN Laboratories Incorporated, Cambridge, MA 02238

J. Mech., Trans., and Automation 110(2), 203-210 (Jun 01, 1988) (8 pages) doi:10.1115/1.3258927 History: Received February 01, 1988; Online November 19, 2009


For straight or spiral bevel gears of nominal spherical involute design, the resultant total force vector transmitted by the gear mesh, in the absence of friction, lies in the plane of tooth contact. This force vector can be characterized by three scalar components, two orthogonal force components lying in the plane of contact and the resultant moment taken about the nominal center of the zone of contact. Equations for these three generalized force components are derived. The equations are expressed in terms of tooth pair/gear body stiffnesses, bearing/bearing support flexibility influence coefficients, the shaft input torque, deviations of the tooth running surfaces from perfect spherical involute surfaces, and bearing centerline offsets from the positions occupied by the base cone axes of the perfect involute bevel gear counterparts to the actual gears under consideration. Inertial forces arising from transverse and axial vibrations of the gear bodies are assumed to be negligible in comparison with the bearing support reaction forces.

Copyright © 1988 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In