RESEARCH PAPERS: Mechanisms Papers

A Method for Calculating the Steady-State Dynamic Response of Rigid-Body Machine Systems

[+] Author and Article Information
R. I. Zadoks, A. Midha

School of Mechanical Engineering, Purdue University, W. Lafayette, IN 47907

J. Mech., Trans., and Automation 109(4), 435-442 (Dec 01, 1987) (8 pages) doi:10.1115/1.3258814 History: Received July 01, 1986; Online November 19, 2009


The rigid-body equations of motion for conservative rotating machine systems with position-dependent moments of inertia are found to reduce to a single, second-order, inhomogeneous, nonlinear, ordinary differential equation with variable coefficients. Upon linearization this equation is reduced to first-order form. A rational proportionality between the periods of the variable coefficient and the in-homogeneous term implies that the steady-state rigid-body response will also be periodic. To solve for the steady-state rigid-body response the least common period of the system is divided into an appropriate number of sub-intervals, and the solution over each sub-interval is derived by assuming a constant value of the coefficient during that sub-interval. The final solution is computed by applying appropriate compatiblity and periodicity constraints. The solution algorithm is extended to systems for which the linearization assumptions do not apply through the application of a recursion scheme. Examples are included to illustrate the utility of the algorithm.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In