RESEARCH PAPERS: Mechanisms Papers

A Variational Principle for the Hygrothermoelastodynamic Analysis of Mechanism Systems

[+] Author and Article Information
C. K. Sung, B. S. Thompson

Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1226

J. Mech., Trans., and Automation 109(3), 294-300 (Sep 01, 1987) (7 pages) doi:10.1115/1.3258793 History: Received July 01, 1986; Online November 19, 2009


A variational theorem is presented that may be employed for systematically establishing the equations governing the dynamic response of flexible planar linkage mechanisms simultaneously subjected to both mechanical and hygrothermal loadings. This theoretical development is motivated by recent research advocating that high-speed mechanisms should be fabricated in polymeric fibrous composite materials in order to achieve high-performance characteristics. The constitutive behavior of some of these materials is, however, dependent upon the ambient environmental conditions, and hence mathematical models must be developed in order to predict the response of mechanism systems fabricated with these materials. This class of mechanism systems is modeled herein as a set of continua in which elastic deformations are superimposed upon gross rigid-body motions. By permitting arbitrary independent variations of the system parameters for each link, approximate equations of motion, energy balance, mass balance, and boundary conditions may be systematically constructed. As an illustrative example, the derivation of a problem definition for the flexible connecting-rod of a slider-crank mechanism subjected to hygrothermal loading is presented.

Copyright © 1987 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In