RESEARCH PAPERS: Design Automation Papers

Automated Vehicle Dynamic Analysis With Flexible Components

[+] Author and Article Information
S. S. Kim, A. A. Shabana, E. J. Haug

Center for Computer Aided Design, College of Engineering, The University of Iowa, Iowa City, Iowa 52242

J. Mech., Trans., and Automation 106(1), 126-132 (Mar 01, 1984) (7 pages) doi:10.1115/1.3258550 History: Received June 13, 1983; Online November 19, 2009


A method is presented for nonlinear, transient dynamic analysis of vehicle systems that are composed of interconnected rigid and flexible bodies. The finite element method is used to characterize deformation of each elastic body and a component mode technique is employed to reduce the number of elastic generalized coordinates. Equations of motion and constraints of the coupled system are formulated in terms of a minimal set of modal and reference generalized coordinates. A Lagrange multiplier technique is used to account for kinematic constraints between bodies and a generalized coordinate partitioning technique is employed to eliminate dependent coordinates. The method is applied to a planar truck model with a flexible chassis and nonlinear suspension components. Simulation results for transient dynamic response as the vehicle traverses a bump, including the effect of bump-stops, and random terrain show that flexibility of the chassis can be routinely accounted for and predicts significant effects on vibratory motion of the vehicle. Compared with a rigid body model, flexibility of the chassis increases peak acceleration of the chassis and induces high-frequency vertical acceleration in the range of human resonance, measured in this paper as driver absorbed power, which deteriorates ride quality of off-road vehicles.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In