RESEARCH PAPERS: Rotor Dynamics Papers

Application of the Principle of Reciprocity to Flexible Rotor Balancing

[+] Author and Article Information
M. S. Darlow

Mechanical Technology Inc., Latham, N.Y.

A. J. Smalley

Southwest Research Institute, San Antonio, Tex.

J. Mech. Des 104(2), 329-333 (Apr 01, 1982) (5 pages) doi:10.1115/1.3256347 History: Received June 03, 1981; Online November 17, 2009


The least desirable feature of most flexible rotor balancing procedures is the considerable number of trial mass runs required. This is of particular importance in the balancing of machines which require a substantial stabilization time during start-up. Using an adaptation of the principle of reciprocity, it is possible to significantly reduce the required number of trial mass runs for certain rotors when using either influence coefficient balancing or the Unified Balancing Approach. When applied to flexible rotor balancing, the principle of reciprocity states that, given two rotor axial locations, A and B (at which both balancing planes and vibration sensors are located), the influence coefficient relating the vibration level at A to the unbalance at B is identical to that relating the vibration level at B to the unbalance at A. This is true even in the presence of damping. This paper begins with a theoretical discussion of the principle of reciprocity and its application to flexible rotor balancing. The particular means by which reciprocity can be applied to improve the influence coefficient and Unified Balancing Approach procedures are then described in detail. A numerical study was conducted to verify this application of reciprocity, as well as to investigate any possible limitations. The results of this study are reported along with those of a similar experimental study using two substantially different test rotors.

Copyright © 1982 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In