The Efficiency of Involute Spur Gears

[+] Author and Article Information
K. F. Martin

University of Wales Institute of Science and Technology, Cathays Park, Cardiff, U.K.

J. Mech. Des 103(1), 160-169 (Jan 01, 1981) (10 pages) doi:10.1115/1.3254855 History: Received February 01, 1980; Online November 17, 2009


Approximate equations produced by Trachman |15| are used to predict the coefficient of sliding friction between the gear teeth. These equations apply when the lubrication regime is elastohydrodynamic; this is true during many gear contacts. The equations, which require only certain basic characteristics of the lubricant and the gears, are relatively simple and produce values for the coefficient of friction which are acceptable. The use of this coefficient of friction, together with a calculation for the rolling friction force allows the calculation of instantaneous and overall efficiency of the gear train. Contact ratios greater than one are accounted for and the load is assumed to be shared equally between the pairs of teeth. The computed values show that the load torque has a significant effect on both coefficient of friction and efficiency; as the load increases the coefficient of friction increases and the efficiency decreases. The effect of speed does not, over the small range of computations made, have as much significance as load, although it appears that efficiency will probably increase as the speed increases. Comparison of these predicted results with the few experimental tests which are relevant indicates some support, especially for the load effect.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In