Determination of the Critical Operating Speeds of Planar Mechanisms by the Finite Element Method Using Planar Actual Line Elements and Lumped Mass Systems

[+] Author and Article Information
S. Kalaycioglu

Packaging Machinery, Redington, Incorporated, Bellwood, Ill. 60104

C. Bagci

Tennessee Technological University, Cookeville, Tenn. 38501

J. Mech. Des 101(2), 210-223 (Apr 01, 1979) (14 pages) doi:10.1115/1.3454041 History: Received June 21, 1978; Online October 21, 2010


It has been a well-established fact that dynamic systems in motion experience critical speeds, such as rotating shafts and geared systems whose undeformed reference geometry remain the same at all times. Their critical speeds are determined by their natural frequencies of considered type of free vibrations. Linkage mechanisms as dynamic systems in motion change their undeformed geometries as function of time during the cycle of kinematic motion. They do also experience critical operating speeds as rotating shafts and geared systems do, and their critical speeds are determined by the minima of their natural frequencies during a cycle of kinematic motion. Such a minimum occurs at the critical geometry of a mechanism, which is the position at which the maximum of the input power is required to maintain the instantaneous dynamic equilibrium of the mechanism. Actual finite line elements are used to form the global generalized coordinate flexibility matrix. The natural frequencies of the mechanism and the corresponding mode vectors (mode deflections) are determined as the eigen values and eigen vectors of the equations of instantaneous-position-free-motion of the mechanism. Method is formulated to include or exclude the link axial deformations, and apply to any number of loops having any type of planar pair. Critical speeds of planar four-bar, slider-crank, and Stephenson’s six-bar mechanisms are determined. Experimental results for the four-bar mechanism are given. Effect of axial deformations and link rotary inertias are investigated. Inclusion of link axial deformations in mechanisms having pairs with sliding freedoms is seen to predict critical speeds with large error.

Copyright © 1979 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In