Smith, S. T., 2000, "*Flexure: Element of Elastic Mechanisms*", CRC Press LLC, London, United Kingdom.

Smith, S. T., and Chetwynd, D. G., 1992, "*Foundations of Ultra-Precision Mechanism Design*", CRC Press LLC, London, UK.

Culpepper, M. L., and Anderson, G., 2004, “Design of a Low-Cost Nano-Manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism,” Precis. Eng., 28 (4), pp. 469–482.

[CrossRef]Dagalakis, N. G., and Amatucci, E., 2001, “Kinematic Modeling of a 6 Degree of Freedom Tri-Stage Micro-Positioner,” "*Proceedings of the American Society for Precision Engineering 16th Annual Meeting*", Crystal City, VA, Nov. 10–15, pp. 200–203.

Aguirre, A. D., Hertz, P. R., Chen, Y., Fujimoto, J. G., Piyawattanametha, W., Fan, L., and Wu, M. C., 2007, “Two-Axis MEMS Scanning Catheter for Ultrahigh Resolution Three-Dimensional and En Face Imaging,” Opt. Express, 15 (5), pp. 2445–2453.

[CrossRef]Henein, S., Frommherz, U., Betemps, R., Kalt, H., Ellenberger, U., Flechsig, U., and Raabe, J., 2007, “Mechanical Design of a Spherical Grating Monochromator for the Microspectroscopy Beamline Pollux at the Swiss Light Source,” "

*AIP Conf. Proc.*", 879 (1), pp. 643–646.

[CrossRef]Dimentberg, F., 1965, “The Screw Calculus and Its Applications in Mechanics,” Foreign Technology Division, Wright-Patterson Air Force Base, OH, Technical Report No. FTD-HT-23–1632-67.

Ball, R. S., 1998, "*The Theory of Screws*", Cambridge University Press, Cambridge, England (Originally published in 1876 and revised by the author in 1900, now reprinted with an introduction by H.Lipkin and J.Duffy).

Loncaric, J., 1987, “Normal Forms of Stiffness and Compliance Matrices,” IEEE J. Rob. Autom., 3 (6), pp. 567–572.

[CrossRef]Lipkin, H., and Patterson, T., 1992, “Geometric Properties of Modelled Robot Elasticity: Part I—Decomposition,” "*Proceedings of ASME Design Technical Conferences*", DE-Vol. 45 , pp. 187–193.

Lipkin, H., and Patterson, T., 1992, “Geometric Properties of Modelled Robot Elasticity: Part II—Decomposition,” "*Proceedings of ASME Design Technical Conferences*", DE-Vol. 45 , pp. 179–185.

Patterson, T., and Lipkin, H., 1993, “Structure of Robot Compliance,” ASME J. Mech. Des., 115 (3), pp. 576–580.

[CrossRef]Selig, J., and Ding, X., 2001, “A Screw Theory of Static Beams,” "*Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems*", Vol. 1 , pp. 312–317.

Selig, J. M., and Ding, X., 2009, “A Screw Theory of Timoshenko Beams,” ASME J. Appl. Mech., 76 (3), 031003.

[CrossRef]Hunt, K. H., 1978, "*Kinematic Geometry of Mechanisms*", Oxford University Press, New York.

Lipkin, H., and Duffy, J., 1985, “The Elliptic Polarity of Screws,” ASME J. Mech., Transm., Autom. Des., 107 (3), pp. 377–386.

[CrossRef]Mises, R. V., 1924, “Motorrechnung, ein neues hilfsmittel der mechanik,” "*ZAMM—J. Appl. Math. Mech.(Zeitschrift fr Angewandte Mathematik und Mechanik*"), 4(2), pp. 155–181. (English Translation by Baker, E.J., and Wohlhart, K., 1996, "*Motor Calculus, A New Theoretical Device for Mechanics*", Institute for Mechanics, University of Technology Graz, Austria).

Awtar, S., Slocum, A. H., and Sevincer, E., 2007, “Characteristics of Beam-Based Flexure Modules,” ASME J. Mech. Des., 129 (6), pp. 625–639.

[CrossRef]Dai, J. S., and Ding, X., 2006, “Compliance Analysis of a Three-Legged Rigidly-Connected Platform Device,” ASME J. Mech. Des., 128 (4), pp. 755–764.

[CrossRef]Patil, C. B., Sreenivasan, S. V., and Longoria, R. G., 2008, “Analytical and Experimental Characterization of Parasitic Motion in Flexure-Based Selectively Compliant Precision Mechanisms,” "*Proceedings of the ASME IDETC/CIE*", pp. 393–404.

Pei, X., Yu, J., Zong, G., Bi, S., and Su, H., 2009, “The Modeling of Cartwheel Flexural Hinges,” Mech. Mach. Theory, 44 (10), pp. 1900–1909.

[CrossRef]Awtar, S., and Sen, S., 2010, “A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation,” ASME J. Mech. Des., 132 (8), p. 081008.

[CrossRef]Awtar, S., and Sen, S., 2010, “A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation,” ASME J. Mech. Des., 132 (8), p. 081009.

[CrossRef]Her, I., and Midha, A., 1987, “A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis,” ASME J. Mech., Transm., Autom. Des., 109 (3), pp. 348–355.

[CrossRef]Midha, A., Murphy, M. D., and Howell, L. L., 1997, “Compliant Constant-Force Mechanism and Devices Formed Therewith,” U.S. Patent and Trademark Office, Washington, DC, U.S. Patent No. 5,649,454.:

Huang, S., and Schimmels, J. M., 1998, “The Bounds and Realization of Spatial Stiffnesses Archieved With Simple Springs Connected in Parallel,” IEEE Trans. Rob. Autom., 14 (3), pp. 466–475.

[CrossRef]Huang, S., and Schimmels, J. M., 2000, “The Bounds and Realization of Spatial Compliance Archieved With Simple Serial Elastic Mechanisms,” IEEE Trans. Rob. Autom., 16 (1), pp. 99–103.

[CrossRef]Kim, C. J., Kota, S., and Moon, Y.-M., 2006, “An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms,” ASME J. Mech. Des., 128 (3), pp. 542–550.

[CrossRef]Krishnan, G., Kim, C., and Kota, S., 2011, “An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms,” ASME J. Mech. Rob., 3 (1), p. 011001.

[CrossRef]Krishnan, G., Kim, C., and Kota, S., 2009, “Design Synthesis of 2-d Compliant Mechanisms Utilizing Serial Concatenation of Building Blocks,” "*ASME Conference Proceedings*", pp. 299–312.

Hartmann, F., and Katz, C., 2007, "*Structural Analysis With Finite Elements*", 2nd ed., Springer, New York.

Kassimali, A., 2011, "*Matrix Analysis of Structures*", 2nd ed., CL-Engineering, Stamford, CT
.

Petri, P. A., 2002, “A Continuum Mechanic Design Aid for Non-Planar Compliant Mechanisms,” Master’s thesis, MIT, Cambridge, MA.

Selig, J., 1996, "*Geometrical Methods in Robotics*", Springer Verlag, New York.

McCarthy, J. M., 2000, "*Geometric Design of Linkages*", Springer-Verlag, New York.

Young, W. C., and Budynas, R. G., 2001, "*Roark’s Formulas for Stress and Strain*", 7th ed., McGraw-Hill, New York.

Su, H.-J., 2011, “Mobility Analysis of Flexure Mechanisms Via Screw Algebra,” ASME J. Mech. Rob., 3 (4), p. 041010.

[CrossRef]Blanding, D. L., 1999, "*Exact Constraint: Machine Design Using Kinematic Processing*", ASME Press, New York.

Zhang, S., and Fasse, E. D., 2001, “A Finite-Element-Based Method to Determine the Spatial Stiffness Properties of a Notch Hinge,” ASME J. Mech. Des., 123 (1), pp. 141–147.

[CrossRef]
Lobontiu, N., 2003, "*Compliant Mechanisms: Design of Flexure Hinges*", CRC Press, London, UK.

Yong, Y. K., Lu, T.-F., and Handley, D. C., 2008, “Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations,” Precis. Eng., 32 (2), pp. 63–70.

[CrossRef]Ding, X., and Selig, J. M., 2004, “On the Compliance of Coiled Springs,” Int. J. Mech. Sci., 46 (5), pp. 703–727.

[CrossRef]Zhang, S., 1999, “Lumped-Parameter Modelling of Elastically Coupled Bodies: Derivation of Constitutive Equations and Determination of Stiffness Matrices,” Ph.D. thesis, The University of Arizona, Tucson, AZ

Fasse, E. D., and Breedveld, P. C., 1998, “Modeling of Elastically Coupled Bodies: Part II—Exponential and Generalized Coordinate Methods,” ASME J. Dyn. Syst., Meas., Control, 120 (4), pp. 501–506.

[CrossRef]