The hybrid discretization model for topology optimization of compliant mechanisms is introduced in this paper. The design domain is discretized into quadrilateral design cells. Each design cell is further subdivided into triangular analysis cells. This hybrid discretization model allows any two contiguous design cells to be connected by four triangular analysis cells whether they are in the horizontal, vertical, or diagonal direction. Topological anomalies such as checkerboard patterns, diagonal element chains, and de facto hinges are completely eliminated. In the proposed topology optimization method, design variables are all binary, and every analysis cell is either solid or void to prevent the gray cell problem that is usually caused by intermediate material states. Stress constraint is directly imposed on each analysis cell to make the synthesized compliant mechanism safe. Genetic algorithm is used to search the optimum and to avoid the need to choose the initial guess solution and conduct sensitivity analysis. The obtained topology solutions have no point connection, unsmooth boundary, and zigzag member. No post-processing is needed for topology uncertainty caused by point connection or a gray cell. The introduced hybrid discretization model and the proposed topology optimization procedure are illustrated by two classical synthesis examples of compliant mechanisms.