Shigley, J., and Uicker, J., 1980, "*Theory of Machines and Mechanisms*", McGraw-Hill, New York.

Erdman, A., and Sandor, G., 1984, "*Mechanism Design: Analysis and Synthesis*", Prentice-Hall, Englewood Cliffs, NJ.

Angeles, J., Alivizatoss, A., and Akhras, R., 1988, “An Unconstrained Nonlinear Least-Square Method of Optimization of RRR Planar Path Generators,” Mech. Mach. Theory, 23 (5), pp. 343–353.

[CrossRef]Freudenstein, F., and Sandor, G. N., 1959, “Synthesis of Path Generating Mechanisms by Means of a Programmed Digital Computer,” J. Eng. Ind., 81 , pp. 159–168.

Morgan, A., and Wampler, C., 1990, “Solving a Planar Four-Bar Design Problem Using Continuation,” ASME J. Mech. Des., 112 (4), pp. 544–550.

[CrossRef]Subbian, T., and Flugrad, D. R., 1991, “Four-Bar Path Generation Synthesis by a Continuation Method,” ASME J. Mech. Des., 113 (1), pp. 63–69.

[CrossRef]Roth, B., and Freudenstein, F., 1963, “Synthesis of Path-Generating Mechanisms by Numerical Methods,” ASME J. Eng. Ind., 85 (B3), pp. 298–306.

Tsai, L. W., and Lu, J. J., 1990, “Coupler-Point-Curve Synthesis Using Homotopy Methods,” ASME J. Mech. Des., 112 (3), pp. 384–389.

[CrossRef]Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1992, “Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages,” ASME J. Mech. Des., 114 (1), pp. 153–159.

[CrossRef]Roberts, S., 1875, “On Three-Bar Motion in Plane Space,” Proc. London Math. Soc., s1–7 , pp. 14–23.

[CrossRef]Tari, H., Su, H. -J., and Li, T. -Y., 2010, “A Constrained Homotopy Technique for Excluding Unwanted Solutions From Polynomial Equations Arising in Kinematics Problems,” Mech. Mach. Theory, 45 (6), pp. 898–910.

[CrossRef]Raghavan, M., 1993, “The Stewart Platform of General Geometry Has 40 Configurations,” ASME J. Mech. Des., 115 , pp. 277–282.

[CrossRef]Tsai, L. W., and Morgan, A. P., 1985, “Solving the Kinematics of the Most General Six- and Five-Degree of Freedom Manipulators by Continuation Methods,” ASME J. Mech., Transm., Autom. Des., 107 , pp. 189–200.

Sommese, A. J., and Wampler, C. W., 2005, "

*The Numerical Solution of Systems of Polynomials Arising in Engineering and Science*", World Scientific, Singapore.

[CrossRef]Li, T. Y., 2003, “Numerical Solution of Polynomial Systems by Homotopy Continuation Methods,” "*Handbook of Numerical Analysis*", Elsevier, Vol. 11 , pp. 209–304.

Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., “Regeneration Homotopies for Solving Systems of Polynomials,” Mathematics of Computation, to be published.

Su, H. -J., McCarthy, J. M., Sosonkina, M., and Watson, L. T., 2006, “Algorithm 857: POLSYS_GLP—A Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of Equations,” ACM Trans. Math. Softw., 32 (4), pp. 561–579.

[CrossRef]Bates, D. J., Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., 2008, “Software for Numerical Algebraic Geometry: A Paradigm and Progress Towards Its Implementation, Software for Algebraic Geometry,” "*The IMA Volumes in Mathematics and Its Applications*", Springer Verlag, Vol. 148 , pp. 1–14.

Lee, T. L., Li, T. Y., and Tsai, C. H., 2008, “HOM4PS-2.0: A Software Package for Solving Polynomial Systems by the Polyhedral Homotopy Continuation Method,” Computing, 83 (2–3), pp. 109–133.

[CrossRef]Li, T. -Y., and Tsai, C. -H., 2009, “HOM4PS-2.0para: Parallelization of HOM4PS-2.0 for Solving Polynomial Systems,” Parallel Comput., 35 (4), pp. 226–238.

[CrossRef]Sommese, A. J., and Wampler, C. W., 1996, “Numerical Algebraic Geometry,” Lect. Appl. Math., 32 , pp. 749–763.

Sommese, A. J., and Verschelde, J., 2000, “Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Set,” J. Complex., 16 , pp. 572–602.

[CrossRef]Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, “Numerical Decomposition of the Solution Sets of Polynomial Systems Into Irreducible Components,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 38 (6), pp. 2022–2046.

Dhingra, A. K., Cheng, J. C., and Kohli, D., 1994, “Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization,” ASME J. Mech. Des., 116 (4), pp. 1122–1131.

[CrossRef]Wampler, C. W., 1996, “Isotropic Coordinates, Circularity and Bézout Numbers: Planar Kinematics From a New Perspective,” Proceedings of the ASME Design Engineering Technical Conference , pp. 18–22.

Cox, D., Little, J., and O’Shea, D., 2007, "*Ideals, Varieties and Algorithms*", 3rd ed., Springer, New York.

Garcia, C. B., and Zangwill, W. I., 1977, “Global Continuation Methods for Finding All Solutions to Polynomial Systems of Equations in n Variables,” Center for Math Studies in Business and Economics, University of Chicago, Report No. 7755.

Bates, D. J., Hauenstein, J. D., Sommese, A. J., and Wampler, C. W., 2009, “Bertini: Software for Numerical Algebraic Geometry,”

http://www.nd.edu/~sommese/bertiniWatson, L. T., and Morgan, A. P., 1992, “Polynomial Programming Using Multi-Homogeneous Polynomial Continuation,” J. Comput. Appl. Math., 43 (3), pp. 373–382.

[CrossRef]Duffy, J., and Crane, C., 1980, “A Displacement Analysis of the General Spatial 7-Link, 7R Mechanism,” Mech. Mach. Theory, 15 (3), pp. 153–169.

[CrossRef]Norton, R. L., 2008, "*Design of Machinery, An Introduction to the Synthesis and Analysis of Mechanisms and Machines*", McGraw-Hill, New York.