Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W., and Ginzburg, L., 2007, “Experimental Uncertainty Estimation and Statistics for Data Having Interval Uncertainty,” Sandia National Laboratories Technical Report No. SAND2007-0939, Albuquerque, NM.

Du, X., Sudjianto, A., and Huang, B., 2005, “Reliability Based Design With Mixture of Random and Interval Variables,” ASME J. Mech. Des., 127 , pp. 1068–1076.

[CrossRef]Hailperin, T., 1986, "*Boole’s Logic and Probability*", North-Holland, Amsterdam.

Williamson, R. C., and Downs, T., 1990, “Probabilistic Arithmetic I: Numerical Methods for Calculating Convolutions and Dependency Bounds,” Int. J. Approx. Reason., 4 , pp. 89–158.

[CrossRef]Berleant, D., 1993, “Automatically Verified Reasoning With Both Intervals and Probability Density Functions,” Interval Computations, 2 , pp. 48–70.

Berleant, D., 1996, “Automatically Verified Arithmetic on Probability Distributions and Intervals,” "*Applications of Interval Computations*", B.Kearfott and V.Kreinovich, eds., Kluwer Academic, Dordrecht, The Netherlands, pp. 227–244.

Berleant, D., and Goodman-Strauss, C., 1998, “Bounding the Results of Arithmetic Operations on Random Variables of Unknown Dependency Using Intervals,” Reliab. Comput., 4 , pp. 147–165.

[CrossRef]Zhang, R., and Mahadevan, S., 2000, “Model Uncertainty and Bayesian Updating in Reliability-Based Inspection,” Struct. Safety, 22 , pp. 145–160.

[CrossRef]Youn, B. D., and Wang, P., 2008, “Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method,” Struct. Multidiscip. Optim., 36 , pp. 107–123.

[CrossRef]Shafer, G., 1976, "*A Mathematical Theory of Evidence*", Princeton University Press, Princeton, NJ.

Oberkampf, W. L., Helton, J. C., and Sentz, K., 2001, “Mathematical Representation of Uncertainty,” Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit , Seattle, WA, Paper No. AIAA 2001-1645.

Mourelatos, Z. P., and Zhou, J., 2006, “A Design Optimization Method Using Evidence Theory,” ASME J. Mech. Des., 128 (4), pp. 901–908.

[CrossRef]Agarwal, H., Renaud, J. E., Preston, E. L., and Padmanabhan, D., 2004, “Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization,” Reliab. Eng. Syst. Saf., 85 (1–3), pp. 281–294.

[CrossRef]Du, X., 2008, “Unified Uncertainty Analysis by the First Order Reliability Method,” ASME J. Mech. Des., 130 (9), p. 091401.

[CrossRef]Guo, J., and Du, X., 2007, “Sensitivity Analysis With Mixture of Epistemic and Aleatory Uncertainties,” AIAA J., 45 (9), pp. 2337–2349.

[CrossRef]Guo, J., and Du, X., 2009, “Reliability Sensitivity Analysis With Random and Interval Variables,” Int. J. Numer. Methods Eng., 78 (13), pp. 1585–1617.

[CrossRef]Ben-Haim, Y., and Elishakoff, I., 1990, "*Convex Models of Uncertainty in Applied Mechanics*" (Studies in Applied Mechanics , 25), Amsterdam, The Netherlands.

Dubois, D., and Prade, H., 1988, "*Possibility Theory: An Approach to Computerized Processing of Uncertainty*", 1st ed., Plenum, New York.

Rao, S. S., and Annamdas, K. K., 2009, “An Evidence-Based Fuzzy Approach for the Safety Analysis of Uncertain Systems,” 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , Palm Springs, CA, Paper No. AIAA-2009-2263.

Oberkampf, W. L., Helton, J. C., Joslyn, C. A., Wojtkiewicz, S. F., and Ferson, S., 2004, “Challenge Problems: Uncertainty in System Response Given Uncertain Parameters,” Reliab. Eng. Syst. Saf., 85 , pp. 11–19.

[CrossRef]Helton, J. C., Johnson, J. D., and Oberkampf, W. L., 2004, “An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions,” Reliab. Eng. Syst. Saf., 85 , pp. 39–71.

[CrossRef]Ferson, S., and Hajagos, J., 2004, “Arithmetic With Uncertain Numbers: Rigorous and (Often) Best-Possible Answers,” Reliab. Eng. Syst. Saf., 85 , pp. 135–152.

[CrossRef]Berleant, D., and Zhang, J., 2004, “Representation and Problem Solving With Distribution Envelope Determination (DEnv),” Reliab. Eng. Syst. Saf., 85 , pp. 153–168.

[CrossRef]Fetz, T., and Oberguggenberger, M., 2004, “Propagation of Uncertainty Through Multivariate Functions in the Framework of Sets of Probability Measures,” Reliab. Eng. Syst. Saf., 85 , pp. 73–87.

[CrossRef]Kozine, I. O., and Utkin, L. V., 2004, “An Approach to Combining Unreliable Pieces of Evidence and Their Propagation in a System Response Analysis,” Reliab. Eng. Syst. Saf., 85 , pp. 103–112.

[CrossRef]de Cooman, G., and Troffaes, M. C. M., 2004, “Coherent Lower Previsions in Systems Modeling: Products and Aggregation Rules,” Reliab. Eng. Syst. Saf., 85 , pp. 113–134.

[CrossRef]Li, W., and Hyman, J. M., 2004, “Computer Arithmetic for Probability Distribution Variables,” Reliab. Eng. Syst. Saf., 85 , pp. 191–209.

[CrossRef]Klir, G. J., 2004, “Generalized Information Theory: Aims, Results, and Open Problems,” Reliab. Eng. Syst. Saf., 85 , pp. 21–38.

[CrossRef]Hall, J. W., and Lawry, J., 2004, “Generation, Combination and Extension of Random Set Approximations to Coherent Lower and Upper Probabilities,” Reliab. Eng. Syst. Saf., 85 , pp. 89–101.

[CrossRef]Rutherford, B., 2004, “A Response-Modeling Approach to Characterization and Propagation of Uncertainty Specified Over Intervals,” Reliab. Eng. Syst. Saf., 85 , pp. 211–222.

[CrossRef]Ayyub, B. M., 2004, “From Dissecting Ignorance to Solving Algebraic Problems,” Reliab. Eng. Syst. Saf., 85 , pp. 223–238.

[CrossRef]Helton, J. C., Johnson, J. D., Oberkampf, W. L., and Sallaberry, C. J., 2008, “Representation of Analysis Results Involving Aleatory and Epistemic Uncertainty,” Sandia Report No. SAND2008-4379.

Robert, C. P., and Casella, G., 2004, "*Monte Carlo Statistical Methods*", 2nd ed., Springer-Verlag, New York.

Haldar, A., and Mahadevan, S., 2000, "*Probability, Reliability and Statistical Methods in Engineering Design*", Wiley, New York.

Ghanem, R., and Spanos, P., 1991, "*Stochastic Finite Elements: A Spectral Approach*", Springer-Verlag, New York.

Cheng, H., and Sandu, A., 2009, “Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems,” Math. Comput. Simul., 79 , pp. 3278–3295.

[CrossRef]Bichon, B. J., McFarland, J. M., and Mahadevan, S., 2008, “Using Bayesian Inference and Efficient Global Reliability Analysis to Explore Distribution Uncertainty,” 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference , Schaumburg, IL, Apr. 7–10.

McDonald, M., and Mahadevan, S., 2008, “Uncertainty Quantification and Propagation for Multidisciplinary System Analysis,” 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference , Victoria, BC, Canada, Sep. 9–12.

Zaman, K., Rangavajhala, S., McDonald, P. M., and Mahadevan, S., “A Probabilistic Approach for Representation of Interval Uncertainty,” Reliab. Eng. Syst. Saf., in press.

Kreinovich, V., 2004, “Probabilities, Intervals, What Next? Optimization Problems Related to Extension of Interval Computations to Situations With Partial Information About Probabilities,” J. Global Optim., 29 (3), pp. 265–280.

[CrossRef]DeBrota, D. J., Swain, J. J., Roberts, S. D., and Venkataraman, S., 1988, “Input Modeling With the Johnson System of Distributions,” Proceedings of the 1988 Winter Simulation Conference .

Venkataraman, S., and Wilson, J. R., 1987, “Modeling Univariate Populations With Johnson’s Translation System-Description of the FITR1 Software,” Research Memorandum, School of Industrial Engineering, Purdue University, West Lafayette, IN.

Red-Horse, J. R., and Benjamin, A. S., 2004, “A Probabilistic Approach to Uncertainty Quantification With Limited Information,” Reliab. Eng. Syst. Saf., 85 , pp. 183–190.

[CrossRef]Ferson, S., Joslyn, C. A., Helton, J. C., Oberkampf, W. L., and Sentz, K., 2004, “Summary From the Epistemic Uncertainty Workshop: Consensus Amid Diversity,” Reliab. Eng. Syst. Saf., 85 , pp. 355–369.

[CrossRef]