Paros, J. M., and Weisbord, L., 1965, “How to Design Flexure Hinge,” Mach. Des., 37 (27), pp. 151–156.

Scire, F. E., and Teague, E. C., 1978, “Piezodriven 50-μm Range Stage With Subnanometer Resolution,” Rev. Sci. Instrum.

[CrossRef], 49 (12), pp. 1735–1740.

Choi, D., and Riviere, C., 2005, “Flexure-Based Manipulator for Active Handheld Microsurgical Instrument,” "*Proceedings of the IEEE Conference on Engineering in Medicine and Biology Society*", pp. 2325–2328.

Gao, P., Swei, S. -M., and Yuan, Z., 1999, “A New Piezodriven Precision Micropositioning Stage Utilizing Flexure Hinges,” Nanotechnology

[CrossRef], 10 , pp. 394–398.

Kim, D., Kang, D., Shim, J., Song, I., and Gweon, D., 2005, “Optimal Design of a Flexure Hinge-Based XYZ Atomic Force Microscopy Scanner for Minimizing Abbe Errors,” Rev. Sci. Instrum., 76 (7), pp. 073706.1–073706.7.

Yi, B. -J., Chung, G. B., Na, H. Y., Kim, W. K., and Suh, I. H., 2003, “Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges,” IEEE Trans. Rob. Autom.

[CrossRef], 19 (4), pp. 604–612.

Merlet, J. -P., Gosselin, C., and Mouly, N., 1998, “Workspaces of Planar Parallel Manipulators,” Mech. Mach. Theory

[CrossRef], 33 (1–2), pp. 7–20.

Pennock, G., and Kassner, D., 1993, “The Workspace of a General Geometry Planar Three Degree of Freedom Platform Manipulator,” ASME J. Mech. Des.

[CrossRef], 115 (2), pp. 269–276.

Kumar, V., 1992, “Characterization of Workspaces of Parallel Manipulators,” ASME J. Mech. Des.

[CrossRef], 114 (3), pp. 368–375.

Niaritsiry, T. -F., Fazenda, N., and Clavel, R., 2004, “Study of the Sources of Inaccuracy of a 3 DOF Flexure Hinge-Based Parallel Manipulator,” Proceedings of the IEEE International Conference on Robotics and Automation , Vol. 4 , pp. 4091–4096.

Land, A., and Doig, A., 1960, “An Automatic Method of Solving Discrete Programming Problems,” Econometrica

[CrossRef], 28 (3), pp. 497–520.

Moore, R., 1966, "*Interval Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Hansen, E., and Walster, G., 2004, "*Global Optimization Using Interval Analysis*", 2nd ed., Dekker, New York.

Berz, M., and Hoffstätter, G., 1998, “Computation and Application of Taylor Polynomials With Interval Remainder Bounds,” Reliable Computing, 4 , pp. 83–97.

Benhamou, F., Goualard, F., and Granvilliers, L., 1999, “Revising Hull and Box Consistency,” "*Proceedings of the. International Conference on Logic Programming*", Las Cruces, NM, pp. 230–244.

Collavizza, M., Delobe, F., and Rueher, M., 1999, “Comparing Partial Consistencies,” Reliable Computing, 5 , pp. 213–228.

Lhomme, O., 1993, “Consistency Techniques for Numeric CSPs,” "*Proceedings of the IJCAI 93*", Chambery, France, Aug., pp. 232–238.

Neumaier, A., 1990, "*Interval Methods for Systems of Equations*", Cambridge University, Cambridge, London.

Alefeld, G., 1984, “On the Convergence of Some Interval-Arithmetic Modifications of Newton’s Method,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 21 (2), pp. 363–372.

Kearfott, R. B., 1988, “Corrigenda: Some Tests of Generalized Bisection,” ACM Trans. Math. Softw., 14 (4), p. 399.

Kearfott, R. B., and Novoa, M., 1990, “Algorithm 681: INTBIS, a Portable Interval Newton/Bisection Package,” ACM Trans. Math. Softw.

[CrossRef], 16 (2), pp. 152–157.

Lu, T. -F., Handley, D. C., Yong, Y. K., and Eales, C., 2004, “A Three-DOF Compliant Micromotion Stage With Flexure Hinges,” Ind. Robot

[CrossRef], 31 (4), pp. 355–361.

Merlet, J. -P., 2000, “ALIAS: An Interval Analysis Based Library for Solving and Analyzing System of Equations,” "*Proceedings of the SEA*", Toulouse, France, June 14–16.

Bonev, I., 2002, “Geometric Analysis of Parallel Mechanisms,” Ph.D. thesis, Université Laval, Québec, QC, Canada.

Merlet, J. -P., 2000, "*Parallel Robots*", Kluwer, Dordrecht.

Merlet, J. -P., and Donelan, P., 2006, “On the Regularity of the Inverse Jacobian of Parallel Robot,” "*Proceedings of the International Symposium of Advances in Robot Kinematics (ARK)*", Ljubljana, Slovenia, June, pp. 41–48.

Merlet, J. -P., 2004, “Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis,” Int. J. Robot. Res., 23 , pp. 221–235.

Raghavan, M., 1991, “The Stewart Platform of General Geometry Has 40 Configurations,” "*Proceedings of the ASME Design and Automation Conference*", Vol. 32 , pp. 397–402.

Hansen, E., 1992, “Bounding the Solution of Interval Linear Equations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 29 , pp. 1493–1503.

Rohn, J., 1993, “Cheap and Tight Bounds: The Recent Result by E. Hansen Can be Made More Efficient,” Interval Computations, 4 , pp. 13–21.

Neumaier, A., 1999, “A Simple Derivation of the Hansen–Bliek–Rohn–Ning–Kearfott Enclosure for Linear Interval Equations,” Reliable Computing, 5 (2), pp. 131–136.