Shoemake, K., 1985, “Animating Rotation With Quaternion Curves,” SIGGRAPH Computer Graphics, 19 (3), pp. 245–254.

Pletinckx, D., 1989, “Quaternion Calculus as a Basic Tool in Computer Graphics,” Visual Comput.

[CrossRef], 5 , pp. 2–13.

Dam, E. B., Koch, M., and Lillholm, M., 1998. “Quaternions, Interpolation and Animation,” University of Copenhagen, Technical Report No. DIKU-TR-98/5.

Duff, T., 1985, “Quaternion Splines for Animating Orientation,” Proceedings of the USENIX Association Second Computer Graphics Workshop , Monterey CA, pp. 54–62.

Kim, M.-J., Kim, M.-S., and Shin, S. Y., 1995, “A C2 Continuous B-Spline Quaternion Curve Interpolating a Given Sequence of Solid Orientations,” "*Proceedings of the Computer Animation*", IEEE Computer Society, Washington, DC, pp. 19–21.

Kim, M. S., and Nam, K. W., 1995, “Interpolating Solid Orientations With Circular Blending Quaternion Curves,” Comput.-Aided Des.

[CrossRef], 27 (5), pp. 385–398.

Nielson, G., 1993, “Smooth Interpolation of Orientations,” "*Computer Animation, Models and Techniques in Computer Animation*", Springer, New York, pp. 75–93.

Nielson, G. M., 2004, “Nu-Quaternion Splines for the Smooth Interpolation of Orientations,” IEEE Trans. Vis. Comput. Graph.

[CrossRef], 10 (2), pp. 224–229.

Wang, W., and Joe, B., 1993, “Orientation Interpolation in Quaternion Space Using Spherical Biarcs,” "*Proceedings of the Graphics Interface’93*", Morgan-Kaufmann, San Francisco, CA, pp. 24–32.

Barr, A. H., Currin, B., Gabriel, S., and Hughes, J. F., 1992, “Smooth Interpolation of Orientations With Angular Velocity Constraints Using Quaternions,” Comput. Graph.

[CrossRef], 26 (2), pp. 313–320.

Ge, Q. J., and Ravani, B., 1994, “Computer-Aided Geometric Design of Motion Interpolants,” ASME J. Mech. Des.

[CrossRef], 116 (3), pp. 756–762.

Ge, Q. J., and Ravani, B., 1994, “Geometric Construction of Bezier Motions,” ASME J. Mech. Des.

[CrossRef], 116 (3), pp. 749–755.

Juttler, B., and Wagner, M. G., 1996, “Computer-Aided Design With Spatial Rational b-Spline Motions,” ASME J. Mech. Des.

[CrossRef], 118 (2), pp. 193–201.

Purwar, A., and Ge, Q. J., 2005, “On the Effect of Dual Weights in Computer Aided Design of Rational Motions,” ASME J. Mech. Des.

[CrossRef], 127 (5), pp. 967–972.

Purwar, A., Chi, X., and Ge, Q. J., 2008, “Automatic Fairing of Two-Parameter Rational b-Spline Motion,” ASME J. Mech. Des.

[CrossRef], 130 (1), p. 011003.

Röschel, O., 1998, “Rational Motion Design: A Survey,” Comput.-Aided Des.

[CrossRef], 30 (3), pp. 169–178.

Horsch, T., and Juttler, B., 1998, “Cartesian Spline Interpolation for Industrial Robots,” Comput.-Aided Des.

[CrossRef], 30 (3), pp. 217–224.

Wagner, M., and Ravani, B., 1996, “Computer Aided Design of Robot Trajectories Using Rational Motions,” "*Recent Advances in Robot Kinematics*", J.Lenarcic and V.Parenti- Castelli, eds., Kluwer, Dordrecht, pp. 151–158.

Jin, Z., and Ge, Q. J., 2007, “Computer Aided Synthesis of Piecewise Rational Motion for Planar 2r and 3r Robot Arms,” ASME J. Mech. Des.

[CrossRef], 129 (10), pp. 1031–1036.

Bottema, O., and Roth, B., 1979, "*Theoretical Kinematics*", North-Holland, Amsterdam.

McCarthy, J. M., 1990, "*Introduction to Theoretical Kinematics*", MIT, Cambridge, MA.

Ravani, B., and Roth, B., 1984, “Mappings of Spatial Kinematics,” ASME J. Mech., Transm., Autom. Des., 106 (3), pp. 341–347.

Farin, G., 1996, "*Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide*", 4th ed., Academic, New York.

Hoschek, J., and Lasser, D., 1993, "*Fundamentals of Computer Aided Geometric Design*", A. K. Peters, Wellesley, MA.

Piegl, L., and Tiller, W., 1995, "*The Nurbs Book*", Springer, Berlin.

Ge, Q. J., and Purwar, A., 2004, “Spears, Oriented Screw Displacements, and Their Image Spaces,” Proceedings of the 11th World Congress in Mechanism And Machine Science IFToMM 2004 , Aug. 18-21, Tianjin, China.

Bangert, C., and Prautzsch, H., 1997, “Circle and Sphere as Rational Splines,” Neural, Parallel and Scientific Computations, 5 (1-2), pp. 153–162.