Park, F. C., 1995, “Distance Metrics on the Rigid Body Motions With Applications to Mechanism Design,” ASME J. Mech. Des., 117 (1), pp. 48–54.

Tsai, L. W., and Roth, B., 1973, “Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis,” ASME J. Eng. Ind., 95 (3), pp. 725–736.

Bottema, O., 1973, “On a Set of Displacements in Space,” ASME J. Eng. Ind., 95 (2), pp. 451–454.

Ball, R. S., 1900, "*A Treatise on the Theory of Screws*", Cambridge University Press, Cambridge, UK, p. 544.

Phillips, J., and Hunt, K. H., 1964, “On the Theorem of Three Axes in the Spatial Motion of Three Bodies,” Aust. J. Appl. Sci., 15 , pp. 267–287.

Sticher, F., 1989, “On the Finite Screw Axis Cylindroid,” Mech. Mach. Theory

[CrossRef], 24 (3), pp. 143–155.

Parkin, I. A., 1992, “A Third Conformation With the Screw Systems: Finite Twist Displacements of a Directed Line and Point,” Mech. Mach. Theory

[CrossRef], 27 (2), pp. 177–188.

Huang, C., and Roth, B., 1994, “Analytic Expressions for the Finite Screw Systems,” Mech. Mach. Theory

[CrossRef], 29 (2), pp. 207–222.

Hunt, K. H., and Parkin, I. A., 1995, “Finite Displacements of Points, Planes, and Lines Via Screw Theory,” Mech. Mach. Theory

[CrossRef], 30 (2), pp. 177–192.

Zhang, Y., and Ting, K. L., 2004, “On the Basis Screws and Screw Systems of Point-Line and Line Displacements,” ASME J. Mech. Des.

[CrossRef], 126 (1), pp. 56–62.

Schafer, R. D., 1996, "*An Introduction to Nonassociative Algebras*", Dover, New York, p. 176.

Selig, J. M., 1996, "*Geometrical Methods in Robotics*", Springer-Verlag, New York, p. 269.

Zefran, M., Kumar, V., and Croke, C., 1996, “Choice of Riemannian Metrics for Rigid Body Kinematics,” "*Proceedings of ASME DETC 1996*", Irvine, CA, Aug. 18–22, Paper No. MECH-1148.

Park, F. C., and Brockett, R. W., 1994, “Kinematic Dexterity of Robotic Mechanisms,” Int. J. Robot. Res., 13 (1), pp. 1–15.

Ting, K. L., and Zhang, Y., 2004, “Rigid Body Motion Characteristics and Unified Instantaneous Motion Representation of Points, Lines, and Planes,” ASME J. Mech. Des.

[CrossRef], 126 (4), pp. 593–601.

Yang, A. T., 1963, “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms,” Ph.D. dissertation, Columbia University, New York, NY.

Bottema, O., and Roth, B., 1979, "*Theoretical Kinematics*", North-Holland, New York, p. 558.

Study, E., 1903, "*Die Geometrie der Dynamen*", Teubner, Leipzig, p. 437.

Ravani, B., and Roth, B., 1984, “Mapping of Spatial Kinematics,” ASME J. Mech., Transm., Autom. Des., 106 (3), pp. 341–347.

McCarthy, J. M., 1990, "*Introduction to Theoretical Kinematics*", MIT, Cambridge, MA, p. 160.

Ge, Q. J., and Ravani, B., 1994, “Geometric Construction of Bezier Motions,” ASME J. Mech. Des.

[CrossRef], 116 (3), pp. 749–755.

Gallot, S., Hulin, D., and Lafontaine, J., 2004, "*Riemannian Geometry*", Springer-Verlag, Berlin.

Roth, B., 1967, “On the Screw Axes and Other Special Lines Associated With Spatial Displacements of a Rigid Body,” ASME J. Eng. Ind., 89 (1), pp. 102–110.

Selig, J. M., 2000, “Clifford Algebra of Points, Lines and Planes,” Robotica, 18 , pp. 545–556.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, "*Numerical Recipes in C—The Art of Scientific Computing*", 2nd ed., Cambridge University Press, Cambridge.

Ge, Q. J., and Ravani, B., 1998, “Geometric Design of Rational Bezier Line Congruences and Ruled Surfaces Using Line Geometry,” Computing Supplement 13: Geometric Modeling, pp. 101–120.