Haftka, R. T., Gürdal, Z., and Kamat, M. P., 1990, "*Elements of Structural Optimization*", 2nd ed., Kluwer, Waterloo, pp. 341–376.

Deka, D. J., Sandeep, G., Chakraborty, D., and Dutta, A., 2005, “Multiobjective Optimization of Laminated Composites Using Finite Element Method and Genetic Algorithm,” J. Reinf. Plast. Compos., 24 (3), pp. 273–285.

Bruyneel, M., 2005, “A General and Effective Approach for the Optimal Design of Fiber Reinforced Composite Structures,” Compos. Sci. Technol., 66 , pp. 1303–1314.

Rahul, Chakraborty, D., and Dutta, A., 2005, “Optimization of FRP Composites Against Impact Induced Failure Using Island Model parallel genetic algorithm,” Compos. Sci. Technol., 65 , pp. 2003–2013.

Pelletier, J. L., and Vel, S. S., 2006, “Multi-Objective Optimization of Fiber Reinforced Composite Laminates for Strength, Stiffness and Minimal Mass,” Comput. Struct., 84 , pp. 2065–2080.

Olson, G. B., 1997, “Computational Design of Hierarchically Structured Materials,” Science

[CrossRef], 277 (5330), pp. 1237–1412.

Ashby, M. F., 2000, “Multi-Objective Optimization in Material Design and Selection,” Acta Mater.

[CrossRef], 48 , pp. 359–369.

Ashby, M. F., and Bréchet, P., 2003, “Designing Hybrid Materials,” Acta Mater., 51 , pp. 5801–5821.

Davidson, G. G., and Labib, A. W., 2003, “Learning From Failures: Design Improvement Using a Multiple Criteria Decision-Making Process,” Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 217 (4), pp. 207–216.

Zhang, X. J., Chen, K. Z., and Feng, X. A., 2004, “Optimization of Materials Properties Needed for Material Design of Component Made of Multi-Heterogeneous Materials,” Mater. Des., 25 , pp. 369–378.

Seepersad, C. C., Kumar, R. S., Allen, J. K., Mistree, F., and McDowell, D. L., 2004, “Multifunctional Design of Prismatic Cellular Materials,” J. Comput.-Aided Mater. Des.

[CrossRef], 11 , pp. 163–181.

Seepersad, C. C., Allen, J. K., McDowell, D. L., and Mistree, F., 2006, “Robust Design of Cellular Materials With Topological and Dimensional Imperfections,” ASME J. Mech. Des.

[CrossRef], 128 , pp. 1285–1297.

Liu, W. K., Su, H., Moran, B., Vernerey, F., and Olson, G. B., 2004, “Multi-Scale Constitutive Model and Computational Framework for the Design of Ultra-High Strength, High Toughness Steels,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 193 , pp. 1865–1908.

McVeigh, C., Vernerey, F., Liu, W. K., and Cate, L. B., 2006, “Multiresolution Analysis for Material Design,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 195 , pp. 5053–5076.

Pelegri, A. A., and Tekkam, A., 2003, “Optimization of Laminates’ Fracture Toughness Using Design of Experiments and Response Surface,” J. Compos. Mater., 37 (7), pp. 579–596.

Tomar, V., and Zhou, M., 2005, “Deterministic and Stochastic Analyses of Dynamic Fracture in Two-Phase Ceramic Microstructures With Random Material Properties,” Eng. Fract. Mech.

[CrossRef], 72 , pp. 1920–1941.

Gano, S. E., Renaud, J. E., and Sanders, B., 2004, “Variable Fidelity Optimization Using a Kriging Based Scaling Function,” "*Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference*", Albany NY, Aug. 30–Sept. 1, pp. 1–19, AIAA Paper No. 2004-4460, pp. 1–9.

Gano, S. E., Agarwal, H., Renaud, J. E., and Tovar, A., 2006, “Reliability Based Design Using Variable Fidelity Optimization,” Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycl, 2 (3–4), pp. 247–260.

Gano, S. E., Renaud, J. E., Martin, J. D., and Simpson, T. W., 2006, “Update Strategies for Kriging Models for Use in Variable Fidelity Optimization,” Struct. Multidiscip. Optim., 32 (4), pp. 287–298.

Gano, S. E., Sanders, B., and Renaud, J. E., 2006, “Hybrid Variable Fidelity Optimization Using a Kriging-Based Scaling Function,” AIAA J., 43 (11), pp. 2422–2430.

Rodriguez, J. F., Renaud, J. E., and Watson, L. T., 1998, “Trust Region Augmented Lagrangian Methods for Sequential Response Surface Approximation and Optimization,” ASME J. Mech. Des.

[CrossRef], 120 (1), pp. 58–66.

Rodriguez, J. F., Renaud, J. E., and Watson, L. T., 1998, “Convergence of Trust Region Augmented Lagrangian Methods Using Variable Fidelity Approximation Data,” Struct. Optim.

[CrossRef], 15 (3–4), pp. 141–156.

Wujek, B. A., and Renaud, J. E., 1998, “A New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 2,” AIAA J., 36 (10), pp. 1922–1937.

Wujek, B. A., and Renaud, J. E., 1998, “A New Adaptive Move-Limit Management Strategy for Approximate Optimization, Part 1,” AIAA J., 36 (10), pp. 1911–1921.

Perez, V. M., Renaud, J. E., and Watson, L. T., 2004, “An Interior-Point Sequential Approximate Optimization Methodology,” Struct. Optim., 27 (5), pp. 360–370.

Rodriguez, J. F., Renaud, J. E., Wujek, B. A., and Tappeta, R. V., 2000, “Trust Region Model Management in Multidisciplinary Design Optimization,” Comput. Appl. Math., 124 , pp. 139–154.

Sobieszczanski-Sobieski, J., 1990, “Sensitivity of Complex, Internally Coupled Systems,” AIAA J., 28 (1), pp. 153–160.

Rodriguez, J. F., Perez, V. M., Padmanabhan, D., and Renaud, J. E., 2001, “Sequential Approximate Optimization Using Variable Fidelity Response Surface Approximations,” Struct. Multidiscip. Optim., 22 , pp. 24–34.

Perez, V. M., Renaud, J. E., and Watson, L. T., 2002, “Reduced Sampling for Construction of Quadratic Response Surface Approximations Using Adaptive Experimental Design,” "*Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference*", Denver, CO, April 22–25, AIAA Paper No. 2002-1587.

Leary, S., Bhaskar, A., and Keane, A., 2000, “A Constraint Mapping Approach to the Structural Optimization of an Expensive Model Using Surrogates,” "*Proceedings of the First International Workshop on Surrogate Modelling and Space Mapping for Engineering Optimization*", Lyngby, Denmark, Nov. 2000.

Qian, Z., Seepersad, C. C., Joseph, V. R., Allen, J. K., and Wu, C. F. J., 2006, “Building Surrogate Models Based on Detailed and Approximate Simulations,” ASME J. Mech. Des.

[CrossRef], 128 (4), pp. 668–677.

Osio, I. G., and Amon, C. H., 2005, “An Engineering Design Methodology With Multistage Bayesian Surrogates and Optimal Sampling,” Res. Eng. Des.

[CrossRef], 8 (4), pp. 189–206.

Anderson, T. L., 1994, "*Fracture Mechanics: Fundamentals and Applications*", CRC, Boca Raton, FL.

Tomar, V., and Zhou, M., 2004, “Deterministic and Stochastic Analyses of Fracture Processes,” "*International Conference on Heterogeneous Material Mechanics*", Chongqing University, China.

COMSOL MULTIPHYSICS , 2005, Finite Element Software, Ver. 3.2.

ASTM, 1997, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, E399, Annual Book of ASTM Standards.

Ragab, A.-R., and Bayoumi, S. E., 1998, "*Engineering Solid Mechanics*", 3rd ed., CRC, Boca Raton, FL.

Chen, C. R., Pascual, F., Fischer, F. D., Koledink, O., and Danzer, R., 2007, “Prediction of the Fracture Toughness of a Ceramic Multilayer Composite, Modeling and Experiments,” Acta Mater., 55 , pp. 409–421.

Vanderplaats, G. N., 1999, "*Numerical Optimization Techniques for Engineering Design*", 3rd ed., VR&D, Colorado Springs, CO, pp. 261–267.

Guo, S., Mamiya, T., and Kagawa, Y., 2006, “In Situ Nondestructive Evaluation of the Accumulative Damage in Continuous Ceramic Fiber-Ceramic Matrix Composites (CFCCs) Using Submillimiter Range Electromagnetic Wave,” Adv. Eng. Mater., 6 (8), pp. 681–683.

Conn, A. R., Gould, N. I. M., and Toint, P. L., 2000, "*Trust-Region Methods*", Society for Industrial and Applied Mathematics and Mathematical Programming, Philadelphia, PA.

Alexandrov, N., 1996, “Robustness Properties of a Trust Region Framework for Managing Approximations in Engineering Optimization,” "*Proceedings of the Sixth AIAA/NASA/USAF Multidisciplinary Analysis & Optimization Symposium*", Bellevue, WA, Sept. 4-6, pp. 1056–1059, AIAA Paper No. 96-4102.

Dennis, J. E., and Torczon, T., 1996, “Approximation Model Management for Optimization,” "*Proceedings of the Sixth AIAA/NASA/USAF Multidisciplinary Analysis & Optimization Symposium*", Bellevue, WA, Sept. 4–6, pp. 1044–1046, AIAA Paper No. 96–4046.

Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, T., and Trosset, M. W., 1999, “A Rigorous Framework for Optimization of Expensive Functions by Surrogates,” Struct. Optim.

[CrossRef], 17 (1), pp. 1–13.

Alexandrov, N. M., and Lewis, R. M., 2001, “An Overview of First-Order Model Management for Engineering Optimization,” Optim. Eng., 2 , pp. 413–430.

Alexandrov, N. M., and Lewis, R. M., 2001, "*First-Order Approximation and Model Management in Optimization, in Large-Scale Pde-Constrained Optimization*", Springer-Verlag, Berlin.

Haftka, R. T., 1991, “Combining Global and Local Approximations,” AIAA J., 29 , pp. 1523–1525.

Lewis, R. M., and Nash, S. G., 2000, “A Multigrid Approach to the Optimization of Systems Governed by Differential Equations,” AIAA Paper No. 2000-4890.

Chang, K. J., Haftka, R. T., Giles, G. L., and Kao, P.-J., 1993, “Sensitivity-Based Scaling for Approximating Structural Response,” J. Aircr., 30 (2), pp. 283–288.

Gano, S. E., Perez, V. M., and Renaud, J. E., 2004, “Multi-Objective Variable-Fidelity Optmization of a Morphing Unmanned Aerial Vehicle,” "*Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference*", Palm Springs, CA, April 19-22, AIAA Paper No. 2004-1763.

Eldred, M. S., Giunta, A. A., Collis, S. S., Alexandrov, N. A., and Lewis, R. M., 2004, “Second-Order Corrections for Surrogate-Based Optimization With Model Hierarchies,” "*Proceedings of the Tenth AIAA/ISSMO Multidisciplinary Analysis & Optimization Conference*", Albany, NY, Aug. 30–Sept. 1, AIAA Paper No. 2004-4457.

Booker, A. J., 1998, “Design and Analysis of Computer Experiments,” "*Proceedings of the Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization*", St. Louis, MO, Sept. 2–4, Vol. 1 , pp. 118–128.

Jones, D. R., Schonlau, M., and Welch, W. J., 1998, “Efficient Global Optimization of Expensive Black-Box Functions,” J. Global Optim.

[CrossRef], 13 , pp. 455–492.

Sasena, M. J., Papalmbros, P., and Goovaerts, P., 2002, “Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization,” Eng. Optimiz.

[CrossRef], 34 (3), pp. 263–278.

Simpson, T. W., Maurey, T. M., Korte, J. J., and Mistree, F., 2001, “Kriging Meta-Models for Global Approximation in Simulation-Based Design,” Eng. Comput.

[CrossRef], 17 (2), pp. 129–150.

Martin, J. D., and Simpson, T. W., 2003, “A Study on the Use of Kriging Models to Approximate Deterministic Computer Models,” "*Proceedings of ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference*", Chicago, IL, Sept. 2–6, Paper No. DET2003/DAC-48762.

Martin, J. D., and Simpson, T. W., 2005, “On the Use of Kriging Models to Approximate Deterministic Computer Models,” AIAA J.

[CrossRef], 43 (4), pp. 853–863.

MATLAB , 2006, Software for Technical Computing, R2006a.

Han, S. P., 1997, “A Globally Convergent Method for Nonlinear Programming,” J. Optim. Theory Appl.

[CrossRef], 22 (3), pp. 297–309.

Powell, M. J. D., 1978, "*The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations*", Academic, New York.

Powell, M. J. D., 1978, “A Fast Algorithm for Nonlineary Constrained Optimization Calculations,” "*Numerical Analysis*"Lecture Notes in Mathematics Vol. 630 , Springer, New York.

Gill, P. E., Murray, W., and Wrigth, M. H., London, 1981, "*Practical Optimization*", Academic, New York.