Howell, L. L., 2001, "*Compliant Mechanisms*", Wiley, New York.

Ananthasuresh, G. K., Kota, S., and Kikuchi, N., 1994 “Strategies for Systematic Synthesis of Compliant MEMS,” "*Proceedings of 1994 ASME Winter Annual Meeting*", Chicago, pp. 677–686.

Nishiwaki, S., Frecker, M., Min, S., and Kikuchi, N., 1998, “Topology Optimization of Compliant Mechanisms using the Homogenization Method,” Int. J. Numer. Methods Eng.

[CrossRef], 42 (3), pp. 535–559.

Yang, L., Saitou, K., and Kikuchi, N., 2004, “Topology Optimization of Thermally Actuated Compliant Mechanisms Considering Time-Transient Effect,” Finite Elem. Anal. Design

[CrossRef], 40 , pp. 1317–1331.

Zhou, M., and Rozvany, G. I. N., 1991, “The COC Algorithm, Part II: Topological, Geometrical, and Generalized Shape Optimization,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 89 , pp. 309–336.

Mlejnik, H. P., and Schirrmacher, R., 1993, “An Engineering Approach to Optimal Material Distribution and Shape Finding,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 106 , pp. 1–26.

Bendsøe, M. P., 1995, "*Optimization of Structural topology, Shape and Material*", Springer, Berlin.

Sigmund, O., 1997 “On the Design of Compliant Mechanisms Using Topology Optimization,” Mech. Struct. Mach., 25 , pp. 495–526.

Larsen, U. D., Sigmund, O., and Bouwstra, S., 1997, “Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio,” J. Microelectromech. Syst.

[CrossRef], 6 (2), pp. 99–106.

Bruns, T. E., and Tortorelli, D. A., 2001, “Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms,” Comput. Methods Appl. Mech. Eng., 190 (26–27), pp. 3443—3459.

Pedersen, C. B. W., Buhl, T., and Sigmund, O., 2001, “Topology Synthesis of Large-Displacement Compliant Mechanisms,” Int. J. Numer. Methods Eng.

[CrossRef]50 (12), pp. 2683–2706.

Sigmund, O., 2001, “Design of Multiphysics Actuators Using Topology Optimization—Part I: One-Material Structures,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 (49–50), pp. 6577–6604.

Sigmund, O., 2001, “Design of Multiphysics Actuators using Topology Optimization—Part II: Two-Material Structures,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 (49–50), pp. 6605–6627.

Sigmund, O., 1994, “Design of Material Structures Using Topology Optimization,” DCAMM Report S.69, Department of Solid Mechanics, Ph.D. thesis, DTU.

Diaz, A., and Sigmund, O., 1995, “Checkerboard Patterns in Layout Optimization,” Struct. Optim.

[CrossRef], 10 , pp. 40–45.

Jog, C. S., and Haber, R. B., 1996, “Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 130 , pp. 203–226.

Yin, L., and Ananthasuresh, G. K., 2003, “A Novel Formulation for the Design of Distributed Compliant Mechanisms,” Mech. Based Des. Struct. Mach.

[CrossRef], 31 , pp. 151–179.

Poulsen, T. A., 2003, “A New Scheme for Imposing Minimum Length Scale in Topology Optimization,” Int. J. Numer. Methods Eng.

[CrossRef], 57 , pp. 741–760.

Guest, J. K., Prévost, J. H., and Belytschko, T., 2004, “Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng., 61 , pp. 238–254.

Hoffman, P., 1998, "*The Man Who Loved Only Numbers: The Story of Paul Erdos and the Search for Mathematical Truth*", Hyperion, New York.

Tóth, L. F., 1964, “What the bees Know and What They Do Not Know,” Bull. Am. Math. Soc.

[CrossRef], 70 , pp. 468–481.

Bleicher, M. N., and Toth, L. F., 1965, Two-Dimensional Honeycombs, American Mathematical Monthly 72, p. 969.

Hales, T. C., 2001 “The Honeycomb Conjecture,” Discrete Comput. Geom., 25 , pp. 1–22.

Weaire, D., and Phelan, R., 1994, “Optimal Design of Honeycombs,” Nature (London)

[CrossRef], 367 , p. 123.

Saxena, R., and Saxena, A., 2003, “On Design of Electro-Thermally Compliant MEMS for Strength,” "*ASME Design Engineering Technical Conferences, Design Automation Conference*", Chicago, IL, Sept. 2–6, Paper No. DETC2002∕DAC-48807.

Saxena, R., and Saxena, A., 2003, “On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms,” "*ASME Design Engineering Technical Conferences, Design Automation Conference*", Chicago, IL, Sept. 2–6, Paper No. DETC2002∕DAC-48806.

Saxena, R., and Saxena, A., 2007, “On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms,” Finite Elem. Anal. Design, 43 (14), pp. 1082–1098.

Mankame, N. D., and Saxena, A., 2007, “Analysis of the Hex Cell Discretization for Topology Synthesis of Compliant Mechanisms,” "*ASME International Design Engineering Technical Conference*", Paper No. DETC 35244.

Chapman, C. D., Saitou, K., and Jakiela, M. J., 1994, “Genetic Algorithms as an Approach to Configuration and Topology Design,” ASME J. Mech. Des.

[CrossRef], 116 , pp. 1005–1012.

Kane, C., and Schoenauer, M., 1996, “Topological Optimum Design Using Genetic Algorithms,” Contr. Cybernet., 25 (5), pp. 1059–1088.

Jakiela, M. J., Chapman, C., Duda, J., Adewuya, A., and Saitou, K., 2000, “Continuum Structural Topology Design With Genetic Algorithms,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 186 , pp. 339–356.

Eschenauer, H. A., and Olhoff, N., 2001, “Topology Optimization of Continuum Structures: A Review,” Appl. Mech. Rev.

[CrossRef], 54 (4), pp. 331–390.

Hull, P., and Canfield, S., 2006, “Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA,” ASME J. Mech. Des.

[CrossRef], 128 , pp. 337–348.

Sethian, J. A., and Wiegmann, A., 2000, “Structural Boundary Via Level Set and Immersed Interface Methods,” J. Comput. Phys.

[CrossRef], 163 (2), pp. 489–528.

Belytschko, T., Xiao, S. P., and Parimi, C., 2003, “Topology Optimization With Implicit Functions and Regularization,” Int. J. Numer. Methods Eng.

[CrossRef], 57 , pp. 1177–1196.

Wang, M. Y., Wang, X., and Guo, D., 2003, “A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 , pp. 227–246.

Chang, S. Y., and Youn, S. K., 2006, “Material Cloud Method—Its Mathematical Investigation and Numerical Application for 3D Engineering Design,” Int. J. Solids Struct., 43 (17), pp. 5337–5354.

Goldberg, D. E., 2002, “Genetic Algorithms in Search, Optimization & Machine Learning,” Addison-Wesley, Readin, MA.

Cox, E., 2005, "*Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration*", Morgan Kauffman, New York.

De Jong, K. A., 2006, "*Evolutionary Computation, A Unified Approach*", MIT, Cambridge, MA.

Parsons, R., and Canfield, S. L., 2002, “Developing Genetic Programming Techniques for the Design of Compliant Mechanisms,” Struct. Multidiscip. Optim., 24 , pp. 78–86.

Saxena, A., 2005, “Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm,” ASME J. Mech. Des.

[CrossRef], 127 , pp. 1–8.

Saxena, A., 2005, “Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports,” Struct. Multidiscip. Optim., 30 (6), pp. 477–490.

Rai, A. K., Saxena, A., and Mankame, N. D., 2007, “Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements,” ASME J. Mech. Des.

[CrossRef], 129 , pp. 1056–1063.

Kreyszig, E., "*Advanced Engineering Mathematics*", 8th ed., Wiley, New York.

Frecker, M., Ananthasuresh, G. K., Nishiwaki, N., Kikuchi, N., and Kota, S., 1997, “Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization,” ASME J. Mech. Des.

[CrossRef], 119 , pp. 238–245.

Saxena, A., and Ananthasuresh, G. K., 2000 “On an Optimality Property of Compliant Topologies,” Struct. Multidiscip. Optim., 19 , pp. 36–49.

Canfield, S., Chlarson, D., Shibakov, A., Richardson, J., and Saxena, A., 2007, “Multi-Objective Optimization of Compliant Mechanisms Including Failure Theories,” "*ASME Design Engineering Technical Conferences*", Las Vegas, Sept., Paper No. DETC2007–35618.