Bendsøe, M. P., and Kikuchi, N., 1988, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng., 71 (2), pp. 197–224.

[CrossRef]Bendsøe, M. P., 1995, "*Optimization of Structural Topology, Shape and Material*", Springer, Berlin.

Yin, L., and Ananthasuresh, G. K., 2001, “Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme,” Struct. Multidiscip. Optim., 23 , pp. 49–62.

[CrossRef]Saxena, R., and Saxena, A., 2007, “On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms,” Finite Elem. Anal. Design, 43 (14), pp. 1082–1098.

[CrossRef]Guest, J. K., Prévost, J. H., and Belytschko, T., 2004, “Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng., 61 , pp. 238–254.

[CrossRef]Rahmatalla, S. F., and Swan, C. C., 2004, “A Q4/Q4 Continuum Structural Topology Optimization Implementation,” Struct. Multidiscip. Optim., 27 , pp. 130–135.

[CrossRef]Diaz, A., and Sigmund, O., 1995, “Checkerboard Patterns in Layout Optimization,” Struct. Optim., 10 , pp. 40–45.

[CrossRef]Jog, C. S., and Haber, R. B., 1996, “Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design,” Comput. Methods Appl. Mech. Eng., 130 , pp. 203–226.

[CrossRef]Saxena, R., and Saxena, A., 2003, “On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms,” ASME Design Engineering Technical Conferences and Design Automation Conference , Chicago, IL, Sept. 2–6, Paper No. DETC2002/DAC-48806.

Sigmund, O., 1994, “Design of Material Structures Using Topology Optimization,” Ph.D. thesis, Department of Solid Mechanics, DTU, Denmark.

Sigmund, O., 2007, “Morphology-Based Black and White Filters for Topology Optimization,” Struct. Multidiscip. Optim., 33 , pp. 401–424.

[CrossRef]Poulsen, T. A., 2003, “A New Scheme for Imposing Minimum Length Scale in Topology Optimization,” Int. J. Numer. Methods Eng., 57 , pp. 741–760.

[CrossRef]Yoon, G., Kim, Y., Bendsoe, M., and Sigmund, O., 2004, “Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage,” Struct. Multidiscip. Optim., 27 , pp. 139–150.

[CrossRef]Sangamesh, R. D., Dinesh, M., Sahu, D. K., and Ananthasuresh, G. K., 2009, “A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms,” ASME J. Mech. Rob., 1 , p. 011003.

Hetrick, J. A., and Kota, S., 1999, “An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms,” ASME J. Mech. Des., 121 (2), pp. 229–234.

[CrossRef]Chen, S., and Wang, M. Y., 2007, “Designing Distributed Compliant Mechanisms With Characteristic Stiffness,” Proceedings of the ASME 2007 International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference , Paper No. DETC2007-34437.

Rahmatalla, S., and Swan, C. C., 2005, “Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization,” Int. J. Numer. Methods Eng., 62 , pp. 1579–1605.

[CrossRef]Chang, S. Y., and Youn, S. K., 2006, “Material Cloud Method—Its Mathematical Investigation and Numerical Application for 3D Engineering Design,” Int. J. Solids Struct., 43 (17), pp. 5337–5354.

[CrossRef]Sethian, J. A., and Wiegmann, A., 2000, “Structural Boundary via Level Set and Immersed Interface Methods,” J. Comput. Phys., 163 (2), pp. 489–528.

[CrossRef]Luo, J. Z., Luo, Z., Chen, S. K., Tong, L. Y., and Wang, M. Y., 2008, “A New Level Set Method for Systematic Design of Hinge-Free Compliant Mechanisms,” Comput. Methods Appl. Mech. Eng., 198 , pp. 318–331.

Wang, M. Y., Chen, S. K., Wang, X. M., and Mei, Y. L., 2005, “Design of Multi-Material Compliant Mechanisms Using Level Set Methods,” ASME J. Mech. Des., 127 , pp. 941–956.

[CrossRef]Jiang, C., and Jia, H., 2006, “Evolutionary Based Intelligent Algorithm for Topology Optimization of Structure,” Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA’06) , pp. 897–902.

Saxena, A., 2008, “A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization,” ASME J. Mech. Des., 130 (8), p. 082304.

[CrossRef]Jain, C., and Saxena, A., 2010, “An Improved Material-Mask Overlay Strategy for Topology Optimization of Structures and Compliant Mechanisms,” ASME J. Mech. Des., 132 (6), p. 061006.

[CrossRef]Sharma, P., and Saxena, A., 2010, “On an Adaptive Mask Overlay Topology Synthesis Method,” ASME Design Engineering and Technical Conferences , Montreal, Canada, Aug. 15–18, Paper No. DETC2010-29113.

Gilat, A., 2004, "*MATLAB: An Introduction With Applications*", 2nd ed., Wiley, New York.

Kreyszig, E., 1999, "*Advanced Engineering Mathematics*", 8th ed., Wiley, New York.

Talischi, C., Paulino, G. H., and Le Chau, H., 2009, “Honeycomb Wachspress Finite Elements for Structural Topology Optimization,” Struct. Multidiscip. Optim., 37 (6), pp. 569–583.

[CrossRef]Yin, L., and Ananthasuresh, G. K., 2003, “Design of Distributed Compliant Mechanisms,” Mech. Based Des. Struct. Mach., 31 (2), pp. 151–179.

[CrossRef]Challis, V. J., 2010, “A Discrete Level-Set Topology Optimization Code Written in MATLAB ,” Struct. Multidiscip. Optim., 41 , pp. 453–464.

[CrossRef]Wei, P., and Wang, M. Y., 2009, “Piecewise Constant Level Set Method for Structural Topology Optimization,” Int. J. Numer. Methods Eng., 78 , pp. 379–402.

[CrossRef]