Rosenauer, N., and Willis, A. H., 1953, "*Kinematics of Mechanisms*", General Publishing Company, Ltd., Toronto, Ontario.

Bottema, O., and Roth, B., 1979, "*Theoretical Kinematics*", North-Holland, Amsterdam, The Netherlands.

Hunt, K. H., 1978, "*The Kinematic Geometry of Mechanisms*", Clarendon, Oxford, UK.

Disteli, M., 1914, “Über des Analogon der Savaryschen Formel und Konstruktion in der kinematischen Geometrie des Raumes,” Zeitschrift für Mathematic und Physik, 62 , pp. 261–309.

Tölke, J., 1976, “Contribution to the Theory of the Axes of Curvature,” Mech. Mach. Theory, 11 , pp. 123–130.

Grill, J., 1999, “Calculating and Optimizing of Grinding Wheels for Manufacturing Grounded Gear Hobs,” Proc. 4th World Congress on Gearing and Power Transmission , Paris France, Mar. 16–18, pp. 1661–1671.

Veldkamp, G. R., 1967, “Conical Systems and Instantaneous Invariants in Spatial Kinematics,” J. Mech., 3 , pp. 329–388.

Dizioglu, B., 1974, “Einfache Herleitung der Euler-Savary’schen Konstruktion der räumlichen Bewegung,” Mech. Mach. Theory, 9 , pp. 261–309.

Roth, B., 1967, “On the Screw Axis and Other Special Lines Associated With Spatial Displacements of a Rigid Body,” Trans. ASME, Ser. B, 89 , pp. 102–110.

Esposito, A., and Belfiore, N. P., 1999, “A Generalization of the Euler Savary Equation,” "*MProc. of the 6th Applied Mechanism and Robotics Conference*", Cincinnati, OH, Dec. 12–15, No. AMR 99-064.

Schulz, U., 1997, “Ein Analogon der Euler-Savary’schen Gleichung für Bahnregelflächen und Hüllflächenpare aus Regelflächen unter Verwendung dualer Vektoren,” Dissertation, TU Dresden, Dresden, Germany.

Stachel, H., 2000, “Instantaneous Spatial Kinematics and the Invariants of Axodes,” "*Proc., Ball 2000 Symposium*", Cambridge UK, July 9–11.

McCarthy, J. M., and Roth, B., 1981, “The Curvature Theory of Line Trajectories in Spatial Kinematics,” ASME J. Mech. Des., 103 , pp. 718–724.

Ito, N., and Takahashi, K., 1999, “Extension of the Euler–Savary Equation to Hypoid Gears,” JSME Int. J., Ser. C, 42 ( 1), pp. 218–224.

Griffis, M., 2003, “A Study of Curvature for Single Point Contact,” Mech. Mach. Theory, 8 (12), pp. 1391–1411.

Ting, K.-L., and Zhang, Y., 2004, “Rigid Body Motion Characteristics and Unified Instantaneous Motion Representation of Points, Lines, and Planes,” ASME J. Mech. Des.

[CrossRef], 126 , pp. 593–601.

Roth, B., 2005, “Finding Geometric Invariants From Time-Based Invariants for Spherical and Spatial Motions,” ASME J. Mech. Des.

[CrossRef], 127 (2), pp. 227–231.

Roth, B., 1999, “Second Order Approximations for Ruled-Surface Trajectories,” "*Proc., 10th World Congress on the Theory of Machines and Mechanisms*", Oulu, Finland, June 20–24.

Jüttler, B., 1997, “An Osculating Motion With Second Order Contact for Spatial Euclidean Motions,” Mech. Mach. Theory, 32 (7), pp. 843–853.

Fayet, M., 2002, “On the Reverse of One Property of Involute Gears,” ASME J. Mech. Des.

[CrossRef], 124 , pp. 330–333.

Dooner, D. B., and Seireg, A. A., 1995, "*The Kinematic Geometry of Gearing: A Concurrent Engineering Approach*", Wiley, New York.

Dooner, D. B., 2002, “On the Three Laws of Gearing,” ASME J. Mech. Des.

[CrossRef], 124 (4), pp. 733–744.

Dooner, D. B., 2003, “On The Three Laws of Gearing,” Proc. Dresden Symposium on Constructive and Kinematic Geometry , Feb. 27–Mar. 1, Dresden, Germany.

Dooner, D. B., 2003, “Introducing Torsure and Cylindroid of Torsure,” J. Rob. Syst., 8 , pp. 429–436.

Hirschhorn, J., 1989, “Path Curvatures in Three-Dimensional Constrained Motion of a Rigid Body,” Mech. Mach. Theory

[CrossRef], 24 (2), pp. 73–81.

Bokelberg, E. H., Hunt, K. H., and Ridley, P. R., 1992, “Spatial Motion-I: Points of Inflection and the Differential Geometry of Screws,” Mech. Mach. Theory, 27 (1), pp. 1–15.

Sommer, H. J., 1992, “Determination of First and Second Order Instant Screw Parameters from Landmark Trajectories,” ASME J. Mech. Des., 114 (2), pp. 274–282.

Skreiner, M., 1967, “On the Points of Inflection in General Spatial Motion,” J. Mech., 2 , pp. 429–433.