Burns, R. H., 1964, “The Kinetostatic Synthesis of Flexible Link Mechanisms,” Ph.D. dissertation, Yale University, New Haven.

Shoup, T. E., and McLarnan, C. W., 1971, “On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms,” ASME J. Eng. Ind., 93 , pp. 263–267.

Sevak, N. M., and McLarnan, C. W., 1974, “Optimal Synthesis of Flexible Link Mechanisms With Large Static Deflections,” ASME Paper No. 74-DET-83.

Hill, T. C., 1987, “Applications in the Analysis and Design of Compliant Mechanisms,” M.S. thesis, Purdue University, West Lafayette.

Wilson, J. F., and Mahajan, U., 1989, “The Mechanics and Positioning of Highly Flexible Manipulator Limbs,” ASME J. Mech., Transm., Autom. Des., 111 , pp. 232–237.

Salomon, B. A., and Midha, A., 1992, “An Introduction to Mechanical Advantage in Design Automation, 18th ASME Design Automation Conference, pp. 47–51.

Howell, L. L., 1993, “A Generalized Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms,” Ph.D. dissertation, Purdue University, West Lafayette.

Ananthasuresh, G. K., 1994, “A New Design Paradigm for Micro-Electro-Mechanical Systems and Investigations on the Compliant Mechanism Synthesis,” Ph.D. thesis, The University of Michigan, Ann Arbor.

Frecker, M. I., Ananthasuresh, G. K., Nishiwaki, S., Kikuchi, N., and Kota, S., 1997, “Topological Synthesis of Compliant Mechanism Using Multi-Criteria Optimization,” ASME J. Mech. Des., 119 pp. 238–245.

Sigmund, O., 2001, “A 99 Line Topology Optimization Code Written in MATLAB ,” Struct. Multidiscip. Optim., 21 , pp. 120–127.

Kota, S., 2001, “Compliant Systems Using Monolithic Mechanisms,” Smart Materials Bulletin, March, pp. 7–10.

Moulton, T., and Ananthasuresh, G. K., 2001, “Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation,” Sens. Actuators, A

[CrossRef], A90 , pp. 38–48.

Saxena, R., and Saxena, A., 2003, “On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms,” "*Proc. of ASME International Design Engineering Technical Conference*", Chicago, ASME, New York, Paper No. DETC2003/DAC-48806.

Mankame, N. D., and Ananthasuresh, G. K., 2004, “A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths,” ASME J. Mech. Des.

[CrossRef], 126 pp. 667–672.

Maddisetty, H., and Frecker, M., 2004, “Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators,” ASME J. Mech. Des.

[CrossRef], 126 , pp. 975–983.

Saxena, A., 2005, “Synthesis of Compliant Mechanisms for Path Generation Using Genetic Algorithm,” ASME J. Mech. Des.

[CrossRef], 127 , pp. 745–752.

Nahvi, H., 1991, “Static and Dynamic Analysis of Compliant Mechanisms Containing Highly Flexible Members,” Ph.D. dissertation, Purdue University, West Lafayette.

Lyon, S. M., Erickson, P. A., Evans, M. S., and Howell, L. L., 1999, “Prediction of the First Model Frequency of Compliant Mechanisms Using the Pseudo-Rigid Body Model,” ASME J. Mech. Des., 121 , pp. 309–313.

Boyle, C., Howell, L. L., Magleby, S. P., and Evans, M. S., 2003, “Dynamic Modeling of Compliant Constant-Force Compression Mechanisms,” Mech. Mach. Theory

[CrossRef], 38 , pp. 1469–1487.

Yu, Y. Q., Howell, L. L., Lusk, C., Yue, Y., and He, M. G., 2005, “Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model,” ASME J. Mech. Des.

[CrossRef], 127 , pp. 760–765.

Howell, L. L., 2001, "*Compliant Mechanisms*", 1st ed.Wiley, New York.

Jensen, B. D., and Howell, L. L., 2004, “Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints,” ASME J. Mech. Des.

[CrossRef], 126 , pp. 657–666.

Tsay, J., Su, L. Q., and Sung, C. K., 2005, “Design of a Linear Micro-Feeding System Featuring Bistable Mechanisms,” J. Micromech. Microeng.

[CrossRef], 15 , pp. 63–70.

Casals-Terre, J., and Shkel, A., 2004, “Dynamic Analysis of a Snap-Action Micromechanism,” "*Proceedings of IEEE Conference*", pp. 1245–1248.

Qiu, J., Lang, J. H., and Slocum, H., 2004, “A Curved-Beam Bistable Mechanism,” Int. J. Solids Struct.

[CrossRef], 13 (2), pp. 137–146.

Crane, N. B., Howell, L. L., Weight, B. L., and Magleby, S. P., 2004, “Compliant Floating-Opposing-Arm (FOA) Centrifugal Clutch,” ASME J. Mech. Des.

[CrossRef], 126 , pp. 169–177.

Su, H. J., and Mccarthy, J. M., 2006, “A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms,” ASME J. Mech. Des.

[CrossRef], 128 , pp. 776–782.

Kim, C. J., Kota, S., and Moon, Y. M., 2006, “An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms,” ASME J. Mech. Des.

[CrossRef], 128 , pp. 542–550.

Sönmez, Ü., and Streit, D. A., 2002, “Compliant Long-Dwell Mechanism Synthesis Using Buckling Beam Theory,” "*CD ROM Proc. ASME 2002: International Design Engineering Technical Conferences ESDA*", Istanbul, ASME, New York, Paper No. DES031.

Bathe, K.-J., "*Finite Element Procedures in Engineering Analysis*", Prentice-Hall, Englewood Cliffs, NJ, 1982.

Bathe, K.-J., Ramm, E., and Wilson, E. L., 1975, “Finite Element Formulation for Large Deformation Dynamic Analysis,” Int. J. Numer. Methods Eng.

[CrossRef], 9 , pp. 353–386.

Yang, T. Y., and Saigal, S., 1984, “A Simple Element for Static and Dynamic Response of Beams With Material and Geometric Nonlinearities,” Int. J. Numer. Methods Eng.

[CrossRef], 20 , pp. 851–867.

Riks, E., 1979, “An Incremental Approach to the Solution of Snapping and Buckling Problems,” Int. J. Solids Struct.

[CrossRef], 15 , pp. 529–551.

Harrison, H. B., 1979, “Large Deformation Analysis of Submerged Ring Frames,” J. Engrg. Mech. Div., 105 , pp. 829–837.

Coulter, B. A., and Miller, R. E., 1988, “Numerical Analysis of Generalized Plane Elastica With Nonlinear Material Behavior,” Int. J. Numer. Methods Eng.

[CrossRef], 26 , pp. 617–630.

Norton, R. L., 1999, "*An Introduction to the Synthesis and Analysis of Mechanisms and Machines*", 2nd ed., McGraw-Hill, New York.

Hrones, J. A., and Nelson, G. L., 1951, "*Analysis of the Four-bar Linkage*", MIT Technology Press, Cambridge, MA.

Kota, S., 1992, “Automatic Selection of Mechanism Design from a Three-Dimensional Design Map,” ASME J. Mech. Des., 114 (3), pp. 359–367.

Kota, S., Erdman, A. G., and Riley, D. R., 1988, “MINN-DWELL-Computer Aided Design and Analysis of Linkage-Type Dwell Mechanisms,” Mech. Mach. Theory, 23 (6), pp. 423–433.

Badre-Alam, A., and Streit, D. A., “Long-Dwell, Finite-Dwell Linkages,” 1994 ASME Mechanism Synthesis and Analysis Conference , pp. 479–485.

Berkof, M. P., 1996, “Design Methodology for a Long Dwell Finite Dwell Linkage,” Master thesis, The Pennsylvania State University.

Sönmez, Ü., 2003, “Introduction to Compliant Long-Dwell Mechanism Synthesis Using Buckling Arc Theory,” "*Proc. ASME International Design Engineering Technical Conference*", Chicago, ASME, New York, Vol. 2B , pp. 999–1007.

Sönmez, Ü., 2000, “Compliant Mechanism Design and Synthesis Using Buckling and Snap-Through Buckling of Flexible Members,” Ph.D. thesis, The Pennsylvania State University, State College, PA.

Shoup, T. E., 1969, “An Analytical Investigation of the Large Deflections of Flexible Beam Springs,” Ph.D. dissertation, The Ohio State University, Columbus.

SMI, Spring Manufacturers Institute, 1991, "*Handbook of Spring Design*".

Wang, C. Y., 1999, “Asymptotic Formula for the Flexible Bar,” Mech. Mach. Theory

[CrossRef], 34 , pp. 645–655.

Den Hartog, J. P., 1987, "*Advanced Strength of Materials*", Dover, New York.

Nordgren, R. P., 1966, “On Finite Deflection of an Extensible Circular Ring Segment,” Int. J. Solids Struct.

[CrossRef], 2 (2), pp. 223–233.