Hartenberg, R. S., and Denavit, J., 1964, "*Kinematic Synthesis of Linkage*", McGraw-Hill, New York.

Freudenstein, F., and Sandor, G., 1959, “Synthesis of Path-Generating Mechanisms by Means of Programmed Digital Computer,” ASME J. Eng. Ind., 81 , pp. 159–168.

McLarnan, C. W., 1963, “Synthesis of Six Link Planar Mechanisms by Numerical Analysis,” ASME J. Eng. Ind., 85 , pp. 5–12.

Roth, B., and Freudenstein, F., 1963, “Synthesis of Path-Generating Mechanisms by Numerical Methods,” ASME J. Eng. Ind., 85 , pp. 298–306.

Philipp, R. E., 1964, “On the Synthesis of Two Degree-of-Freedom Linkages for the Maximum Number of Precision Positions,” Ph.D. dissertation, Columbia University.

Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1992, “Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages,” ASME J. Mech. Des., 114 , pp. 153–159.

Wampler, C. W., 1999, “Solving the Kinematics of Planar Mechanisms,” ASME J. Mech. Des., 121 , pp. 387–391.

Pennock, G. R., and Hasan, A., 2002, “A Polynomial Equation for Coupler Curve of the Double Butterfly Linkage,” ASME J. Mech. Des.

[CrossRef], 124 , pp. 39–46.

Dai, J. S., Zhao, T., and Nester, C., 2004, “Sprained Ankle Physiotherapy Based Mechanism Synthesis and Stiffness Analysis of Rehabilitation Robotic Devices,” Auton. Rob., 16 , pp. 193–302.

Tsai, L. W., and Lu, J. J., 1990, “Coupler-Point Curve Synthesis Using Homotopy Method,” ASME J. Mech. Des., 112 , pp. 384–389.

Perez, A., 2003, Dual Quaternion Synthesis of Constrained Robotic Systems, Ph.D. dissertation, University of California, Irvine.

Perez, A., and McCarthy, J. M., 2004, “Dual Quaternion Synthesis of Constrained Robotic Systems,” ASME J. Mech. Des.

[CrossRef], 126 , pp. 425–435.

Perez, A., and McCarthy, J. M., 2005, “Clifford Algebra Exponentials and Planar Linkage Synthesis Equations,” ASME J. Mech. Des.

[CrossRef], 127 , pp. 931–940.

Ortega, J. M., and Rheinboldt, W. C., 1970, "*Iterative Solution of Nonlinear Equations in Several Variables*", Academic Press, New York, pp. 334–340.

Morgan, A. P., 1987, "*Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems*", Prentice-Hall, Englewood Cliffs, NJ.

Dhingra, A. K., Cheng, J. C., and Kohli, D., 1994, “Synthesis of Six-Link, Slider-Crank and Four-Link Mechanisms for Function, Path and Motion Generation Using Homotopy With m-Homogenization,” ASME J. Mech. Des., 116 , pp. 1122–1131.

Verschelde, J., 1999, “Algorithm 795: PHC Pack: A General-Purpose Solver For Polynomial Systems by Homotopy Continuation,” ACM Trans. Math. Softw.

[CrossRef], 25 (2), pp. 251–276.

Wise, S. M., Sommese, A. J., and Watson, L. T., 2000, “Algorithm 801:POLSYS PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations,” ACM Trans. Math. Softw.

[CrossRef], 26 , pp. 176–200.

Su, H.-J., McCarthy, J. M., and Watson, L. T., 2004, “Generalized Linear Product Polynomial Continuation and the Computation of Reachable Surfaces,” ASME J. Comput. Inf. Sci. Eng.

[CrossRef], 4 (3), pp. 226–234.

Lee, E., Mavroids, C., and Merlet, J. P., 2002, “Five Precision Points Synthesis of Spatial RRR Manipulators Using Interval Analysis,” ASME Design Engineering Technical Conference, Montreal, Sept. 29–Oct. 2.

Lee, E., Mavroids, C., and Merlet, J. P., 2004, “Five Precision Points Synthesis of Spatial RRR Manipulators Using Interval Analysis,” ASME J. Mech. Des.

[CrossRef], 126 , pp. 842–849.

Yang, T. L., 1995, "*Fundamental Theories of Mechanical Systems*" (in Chinese), Mechanical Engineering Publisher, Beijing, pp. 155–164.

Schreiber, H., Meer, K., and Schmitt, B., 2002, “Dimensional Synthesis of Planar Stephenson-Mechanisms for Motion Generation by Circlepoint Search and Homotopy Methods,” Mech. Mach. Theory

[CrossRef], 37 , pp. 717–737.

Ho, C. T., 2001, Precision Position Synthesis for General Planar Mechanisms by Predictor-Corrector Continuation Method, Ph.D. dissertation, University of Minnesota.

Dai, J. S., and Kerr, D. R., 1991, “Geometric Analysis and Optimisation of Symmetrical Watt 6-Bar Mechanisms,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 205 (C1), pp. 275–280.

Dai, J. S., Huang, Z., and Lipkin, H., 2006, “Mobility of Overconstrained Parallel Mechanisms,” ASME J. Mech. Des.

[CrossRef], 128 , pp. 220–229.

Hiebert, K. L., 1982, “An Evaluation of Mathematical Software That Solves Systems of Nonlinear Equations,” ACM Trans. Math. Softw., 8 (1), pp. 5–20.

Bouaricha, A., and Schnabel, R. B., 1997, “Algorithm 768: TENSOLVE : A Software Package for Solving Systems of Nonlinear Equations and Nonlinear Least-Squares Problems Using Tensor Methods,” ACM Trans. Math. Softw.

[CrossRef], 23 (2), pp. 174–195.

Watson, L. T., Sosonkina, M., Melville, R. C., and Morgan, A. P., 1997, “Algorithm 777: HOMOPACK90 : A Suite of Fortran 90 Codes for Globally Convergent Algorithms,” ACM Trans. Math. Softw.

[CrossRef], 23 (4), pp. 514–549.

Allgower, E. L., and Georg, K., 1990, "*Numerical Continuation Methods: An Introduction*", Springer-Verlag, Berlin, Springer Series in Computational Mathematics , Vol. 13 .

Rheinboldt, W. C., 2000, “Numerical Continuation Methods: A Perspective,” J. Comput. Appl. Math., 124 , pp. 229–244.

Li, T. Y., and Wang, X. S., 1993, “Solving Real Polynomial Systems With Real Homotopies,” Math. Comput., 60 , pp. 669–680.

Zufiria, P. J., and Guttalu, R. S., 1990, “On an Application of Dynamical Systems Theory to Determine All the Zeros of a Vector Function,” J. Math. Anal. Appl., 152 , pp. 269–295.

Paloschi, J. R., 1997, “Bounded Homotopies to Solve Systems of Sparse Algebraic Nonlinear Equations,” Comput. Chem. Eng., 21 (5), pp. 531–541.

Coetzee, F. M., and Stonick, V. L., 1998, “On Producing Multiple Solutions Using Repeated Trials,” J. Global Optim., 13 , pp. 241–254.

Walker, H. F., and Watson, L. T., 1990, “Least Change Secant Update Methods for Undetermined Systems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 27 (5) pp. 1227–1262.

Martinez, J. M., 1992, “Quasi-Newton Methods for Solving Underdetermined Nonlinear Simultaneous Equations,” J. Comput. Appl. Math.

[CrossRef], 34 , pp. 171–190.

Dan, N., Yamashita, N., and Fukushima, M., 2002, “Convergence Properties of Inexact Levenberg-Marquardt Method Under Local Error Bound Conditions,” Optim. Methods Software, 17 , pp. 605–626.

Mlinar, J. R., and Erdman, A. G., 2000, “An Introduction to Burmester Field Theory,” ASME J. Mech. Des.

[CrossRef], 122 , pp. 25–30.

Brown, K. M., and Gearhart, W. B., 1971, “Deflation Techniques for the Calculation of Further Solutions of a Nonlinear System,” Numer. Math., 16 , pp. 334–342.

Levy, A. V., and Gómez, S., 1985, “The Tunnelling Method Applied to Global Optimization,” P.T.Boggs and R.H.Byrd (eds), "*SIAM Numerical Optimization*", SIAM, Philadelphia, pp. 213–244.

Ge, R., and Qin, Y., 1987, “A Class of Filled Functions for Finding Global Minimizers of a Function of Several Variables,” J. Optim. Theory Appl., 54 , pp. 241–252.

Neumaier, A., 1990, "*Interval Methods for Systems of Equations*", Cambridge University Press, Cambridge, England, PHI Series in Computer Science .

Ting, K. L., and Dou, X., 1996, “Classification and Branch Identification of Stephenson Six-Bar Chains,” Mech. Mach. Theory

[CrossRef], 31 , pp. 283–295.

Yang, A. T., 1963, “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms,” Ph.D. dissertation, Columbia University.

Tsai, L. W., 1972, “Design of Open Loop Chains for Rigid Body Guidance,” Ph.D. dissertation, Stanford University.

Sandor, G. N., Xu, Y., and Weng, T. C., 1986, “Synthesis of 7-R Spatial Motion Generators With Prescribed Crank Rotations and Elimination of Branching,” Int. J. Robot. Res., 5 (2), pp. 143–156.

Lee, E., Mavroids, C., and Merlet, J. P., 2002, “Solving the Geometrical Design Problem of Spatial 3R Robotic Manipulators Using Polynomial Homotopy Continuation,” ASME J. Mech. Des.

[CrossRef], 124 , pp. 652–661.

Lee, E., and Mavroids, C., 2006, “An Elimination Procedure for Solving the Geometric Design of Spatial 3R Manipulators,” ASME J. Mech. Des.

[CrossRef], 128 , pp. 142–145.

Su, H.-J., Wampler, C. W., and McCarthy, J. M., 2004, “Geometric Design of Cylindric PRS Serial Chains,” ASME J. Mech. Des.

[CrossRef], 126 , pp. 269–277.

Dai, J. S., and Rees Jones, J., 2002, “Null Space Construction Using Cofactors from a Screw Algebra Context,” "*Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*", 458 (2024), pp. 1845–1866.

Luo, Z., 2006, “Kinematic Representation and Numerical Methods in Precision Position Synthesis of Mechanisms,” PhD Dissertation, King's College London, University of London.