Wampler, C. W., 2004, “Locating N Points of a Rigid Body on N Given Planes,” "*Proc. ASME Design Engineering Technical Conf. (CDROM)*", Salt Lake City.

Lazard, D., 1993, “On the Representation of Rigid-Body Motions and its Application to Generalized Platform Manipulators,” in "*Computational Kinematics*", J.Angeles, P.Kovacs, and G.Hommel (eds.) pp. 175–182, Kluwer, Dordrecht.

Ronga, F., and Vust, T., 1992, “Stewart Platforms Without Computer?” "*Proc. Conf. Real Analytic and Algebraic Geometry*", pp. 197–212, Trento.

Mourrain, B., 1993, “The 40 Generic Positions of a Parallel Robot,” "*Proc. ISSAC*", M.Bronstein, ed., pp. 173–182.

Raghavan, M., 1993, “The Stewart Platform of General Geometry has 40 Configurations,” ASME J. Mech. Des., 115 , pp. 277–282.

Husty, M. L., 1996, “An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms,” Mech. Mach. Theory

[CrossRef], 31 , 4, pp. 365–380.

Wampler, C. W., 1996, “Forward Displacement Analysis of General Six-in-Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates,” Mech. Mach. Theory

[CrossRef], 31 , 3, pp. 331–337.

Gao, X. S., Lei, D., Liao, Q., and Zhang, G.-F., 2005, “Generalized Stewart-Gough Platforms and Their Direct Kinematics,” IEEE Trans. Rob. Autom., 21 , 2, pp. 141–151.

Verner, M., Xi, F., and Mechefske, C., 2005, “Optimal Calibration of Parallel Kinematic Machines,” ASME J. Mech. Des., 127 , 1, pp. 62–69.

Huynh, P., and Hervé, J. M., 2005, “Equivalent Kinematic Chains of Three Degree-of-Freedom Tripod Mechanisms With Planar Spherical Bonds,” ASME J. Mech. Des.

[CrossRef], 127 , 1, pp. 95–102.

Xi, F., Angelico, O., and Sinatra, R., 2005, “Tripod Dynamics and its Inertial Effect,” ASME J. Mech. Des., 127 , 1, pp. 144–149.

Wampler, C. W., 2004, “Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops,” ASME J. Mech. Des.

[CrossRef], 126 , 1, pp. 93–100.

Chirikjian, G. S., and Kyatkin, A. B., 2001, "*Engineering Applications of Noncommutative Harmonic Analysis*", CRC Press, New York.

Sommese, A. J., and Wampler, C. W., 1996, “Numerical Algebraic Geometry,” "*Lectures in Applied Mathematics: The Mathematics of Numerical Analysis*", Vol. 32 , American Mathematical Society , Province, R.I., pp. 749–763.

Sommese, A. J., Verschelde, J., and Wampler, C. W., 2004, “Advances in Polynomial Continuation for Solving Problems in Kinematics,” ASME J. Mech. Des.

[CrossRef], 126 , 2, pp. 262–268.

Sommese, A. J., and Wampler, C. W., 2005, "*Numerical Solution of Polynomial Systems Arising in Engineering and Science*", World Scientific, Singapore.

Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, “Using Monodromy to Decompose Solution Sets of Polynomial Systems Into Irreducible Components,” in "*Application of Algebraic Geometry to Coding Theory, Physics, and Computation*", C.Cilibertoet al. , ed., pp. 297–315, Kluwer Academic, Dordrecht.

Sommese, A. J., Verschelde, J., and Wampler, C. W., 2002, “Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 40 , 6, pp. 2026–2046.

Sasaki, T., 2001, “Approximate Multivariate Polynomial Factorization Based on Zero-Sum Relations,” "*Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation (ISSAC 2001)*", B.Mourrain, ed., pp. 284–291, ACM.

Rupprecht, D., 2004, “Semi-Numerical Absolute Factorization of Polynomials With Integer Coefficients,” J. Symb. Comput., 37 , 5, pp. 557–574.

Dixon, A. L., 1909, “The Eliminant of Three Quantics in Two Independent Variables,” Proc. London Math. Soc., 2 , 7, pp. 49–69.

Cox, D., Little, J., and O’Shea, D., 1992, "*Ideals, Varieties, and Algorithms*", Springer-Verlag, Berlin.

Möller, H. M., and Stetter, H. J., 1995, “Multivariate Polynomial Equations With Multiple Zeros Solved by Matrix Eigenproblems,” Numer. Math.

[CrossRef], 70 , pp. 311–329.

Stetter, H. J., 2004, "*Numerical polynomial algebra*", Society for Industrial and Applied Mathematics (SIAM) , Philadelphia, PA.

Goedecher, S., 1994, “Remark on Algorithms to Find Roots of Polynomials,” SIAM J. Sci. Comput. (USA)

[CrossRef], 15 , 5, pp. 1059–1063.

Wampler, C., 2004, “Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops,” ASME J. Mech. Des.

[CrossRef], 126 , 1, pp. 93–100.

Su, H.-J., Wampler, C., and McCarthy, J. M., 2004, “Geometric Design of Cylindric PRS Serial Chains,” ASME J. Mech. Des.

[CrossRef], 126 , 2, pp. 269–277.

Morgan, A. P., 1986, “A Transformation to Avoid Solutions at Infinity for Polynomial Systems,” Appl. Math. Comput., 18 , pp. 77–86.