Howell, L. L., 2001, "*Compliant Mechanisms*", Wiley, New York.

Burns, R. H., and Crossley, F., 1966, “Structural Permutations of Flexible Link Mechanisms,” ASME Paper No. 66-Mech-5.

Her, I., and Midha, A., 1987, “Compliance Number Concept for Compliant Mechanism and Type Synthesis,” ASME J. Mech., Transm., Autom. Des., 109 (3), pp. 348–355.

Murphy, M. D., Midha, A., and Howell, L. L., 1994, “The Topological Synthesis of Compliant Mechanisms,” "*Machine Elements and Machine Dynamics*", DE-Vol. 71 "*Proc. of 23rd ASME Mechanisms Conference*", pp. 481–489.

Howell, L. L., and Midha, A., 1996, “A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms,” J. Mech. Des., 118 , pp. 121–125.

Ananthasuresh, G. K., Kota, S., and Kikuchi, N., 1994, “Strategies for Systematic Synthesis of Compliant MENS,” "*Proc. of 1994 ASME Winter Annual Meeting, Dynamic Systems and Control Division*", Chicago, ASME, New York, pp. 677–686.

Frecker, M. I., Ananthasuresh, G. K., Nishiwaki, S., Kikuchi, N., and Kota, S., 1997, “Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization,” ASME J. Mech. Des.119 (2), pp. 238–245.

Sigmund, O., 1997, “On the Design of Compliant Mechanisms Using Topology Optimization,” Mech. Struct. Mach.25 (4), pp. 493–524.

Larsen, U. D., Sigmund, O., and Bouwstra, S., 1997, “Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson’s Ratio,” J. Microelectromech. Syst.

[CrossRef]6 (2), pp. 99–106.

Nishwaki, N., , 1998, “Design Optimization Method for Compliant Mechanisms and Material Microstructure,” Comput. Methods Appl. Mech. Eng., 151 , pp. 401–417.

Nishwaki, N., , 2001, “Optimal Structural Design Considering Flexibility,” Comput. Methods Appl. Mech. Eng., 190 , pp. 4457–4504.

Lau, G. K., Du, H., and Lim, M. K., 2001, “Use of Functional Specifications as Objective Functions in Topological Optimization of Compliant Mechanism,” Comput. Methods Appl. Mech. Eng., 190 , pp. 4421–4433.

Pedersen, C. B., Buhl, T., and Sigmund, O., 2001, “Topology Synthesis of Large-Displacement Compliant Mechanisms,” Int. J. Numer. Methods Eng.

[CrossRef], 50 , pp. 2683–2750.

Duysinx, P., and Bendsoe, O., 1998, “Topology Optimization of Continuum Structures with Local Stress Constraints,” Int. J. Numer. Methods Eng.

[CrossRef], 43 (2), pp. 1453–1478.

Saxensa, A., and Ananthasuresh, G. K., 2001, “Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications,” J. Mech. Des.

[CrossRef], , 123 , pp. 33–42.

Sigmund, O., 2001, “Design of Multiphysics Actuators Using Topology Optimization-Part II: Two-Material Structures,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 (49-50), pp. 6605–6627.

Ananthasuresh, G. K., and Yin, L., 2002, “A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms,” Sens. Actuators, A, , 97-98 , pp. 599–609.

Silva, E., Nishiwaki, S., Fonseca, J., and Kikuchi, N., 1999, “Optimization Methods Applied to Material and Flextensional Actuator Designed Using the Homogenization,” Comput. Methods Appl. Mech. Eng., 172 , pp. 241–271.

Chen, B. C., Silva, E., and Kikuchi, N., 2001, “Advances in Computational Design and Optimization With Application to MEMS,” Int. J. Numer. Methods Eng., 52 , pp. 23–62.

Poulsen, T. A., 2002, “A Simple Scheme to Prevent Checkerboard Pattern and One-Node Connected Hinges in Topology Optimization,” Struct. Multidiscip. Optim., 24 , pp. 396–399.

Poulsen, T. A., 2003, “A New Scheme for Imposing a Minimum Length Scale in Topology Optimization,” Int. J. Numer. Methods Eng., 57 , pp. 741–760.

Yin, L., and Ananthasuresh, G. K., 2001, “Topology Optimization of Compliant Mechanisms With Multiple Material Using Peak Function Material Interpolation Scheme,” Struct. Multidiscip. Optim., 23 , pp. 49–62.

Yin, L., and Ananthasuresh, G. K., 2003, “Design of Distributed Compliant Mechanisms,” Mechanics Based Design of Structures and Machines, 31 (2), pp. 151–179.

Rahmatalla, S., and Swan, C. C., 2004, Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization, Int. J. Numer. Methods Eng., , Submitted.

Bendsoe, M. P., and Kikuchi, N., 1988, “Generating Optimal Topologies in Structural Design Using a Homogenisation Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 71 , pp. 197–224.

Bendsoe, M. P., and Sigmund, O., 1999 “Material Interpolations in Topology Optimization,” Arch. Appl. Mech.

[CrossRef], 69 , pp. 635–654.

Bendsoe, M. P., and Sigmund, O., 2003, "*Topology Optimization: Theory, Methods and Applications*", Springer, Berlin.

Bendsoe, M. P., 1999, Variable-Topology Optimization: Status and Challenges, in "*Proc. of European Conf. on Computational Mechanics (ECCM’99)*", W.Wunderlich (ed.), Munich, Germany, September.

De Ruiter, M. J., and Van Keulen, F., 2000, “Topology Optimization: Approaching the Material Distribution Problem Using a Topological Function Description,” in "*Computational Techniques for Materials, Composites and Composite Structures*", B.Topping (Ed.), Civil-Comp Press, Edinburgh, UK, pp. 111–119.

Sigmund, O., and Petersson, J., 1998, “Numerical Instabilities in Topology Optimization: a Survey on Procedures Dealing with Checkerboards, Mesh-Dependencies and Local Minima,” Struct. Optim., 16 (1), pp. 68–75.

Osher, S., and Sethian, J. A., 1988, “Front Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys.

[CrossRef], 79 , pp. 12–49.

Osher, S., and Santosa, F., 2001, “Level Set Methods for Optimization Problems Involving Geometry and Constrains I: Frequencies of a Two-Density Inhomogeneous Drum,” J. Comput. Phys., 171 , pp. 272–288.

Sethian, J. A., and Wiegmann, A., 2000, “Structural Boundary Design via Level Set and Immersed Interface Methods,” J. Comput. Phys.

[CrossRef], 163 (2), pp. 489–528.

Wang, M. Y., Wang, X., and Guo, D., 2003, “A Level Set Method for Structural Topology Optimization,” Comput. Methods Appl. Mech. Eng., 192 (1), pp. 227–246.

Allaire, G., Jouve, F., and Taoder, A. M., 2004, “Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys., 194 , pp. 363–393.

Wang, X., Wang, M. Y., and Guo, D., 2004, “Structural Shape and Topology Optimization in a Level-Set Framework of Region Representation,” Struct. Multidiscip. Optim., 27 , pp. 1–19.

Wang, M. Y., and Wang, X., 2005, “A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects,” Comput.-Aided Des., 37 (3), pp. 321–337.

Moon, G. H., Kim, Y. Y., Bendsoe, M. P., and Sigmund, O., 2004, “Hinge-Free Topology Optimization With Embedded Translation-Invariant Differential Wavelet Shrinkage,” Struct. Multidiscip. Optim., 27 , pp. 139–150.

Saxensa, A., and Ananthasuresh, G. K., 2000, “On an Optimal Property of Compliant Topologies,” Struct. Multidiscip. Optim.

[CrossRef], 19 , pp. 36–49.

Sigmund, O., 2000, “Topology Optimization: A Tool for the Tailoring of Structures and Materials,” Philos. Trans. R. Soc. London, , 358 , pp. 211–228.

Osher, S., and Fedkiw, R., 2003, "*Level Set Methods and Dynamic Implicit Surfaces*", Springer, New York.

Wang, M. Y., and Wang, X., 2004, “‘Color’ Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials,” Comput. Methods Appl. Mech. Eng., 193 (6-8), pp. 469–496.

Vese, L. A., and Chan, T. F., 2002, “A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model,” Int. J. Comput. Vis., 50 (3), pp. 271–293.

Haug, E. J., Choi, K. K., and Komkov, V., 1986, "*Design Sensitivity Analysis of Structural Systems*", Academic Press, Orlando.

Mei, Y. L., 2004, “A Level Set Method for Topological Optimization and its Application in Stiff Structures, Compliant Mechanisms and Material Designs” Ph.D. thesis, Dalian University of Technology, Dalian, China.

Sethian, J. A., 1999, "*Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science*", Cambridge University Press, Cambridge, UK.

Peng, D., , 1999, “A PED-Based Fast Local Level Set Method,” J. Comput. Phys.

[CrossRef], 155 , pp. 410–438.

Kong, T. Y., and Rosenfeld, A., 1989, “Digital Topology: Introduction and Survey,” Comput. Vis. Graph. Image Process.

[CrossRef], 48 , pp. 357–393.

Sokolowski, J., and Zochowski, A., 1999, “On the Topological Derivative in Shape Optimization,” SIAM J. Control Optim.

[CrossRef], 37 , pp. 1251–1272.

Wang, X., Mei, Y., and Wang, M. Y., 2004, “Combining Topological Derivatives With Level Set Methods for Topology Optimization,” in "*Proc. of 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference*", Troy, NY.

Kumar, A. V., and Grossard, D. C., 1996, “Synthesis of Optimal Shape and Topology of Structures,” J. Mech. Des., , 118 , pp. 68–74.