Circular-Hinge Line Element for Finite Element Analysis of Compliant Mechanisms

[+] Author and Article Information
Nicolae Lobontiu, Ephrahim Garcia

Sibley School of Mechanical and Aerospace Engineering, Cornell University, 258 Upson Hall, Ithaca, NY 14853

J. Mech. Des 127(4), 766-773 (Jun 27, 2005) (8 pages) doi:10.1115/1.1825046 History: Received December 17, 2003; Revised April 26, 2004; Online June 27, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Paros,  J. M., and Weisbord,  L., 1965, “How to Design Flexure Hinges,” Mach. Des., pp. 151–156.
Smith,  S., Badami,  K. G., Dale,  J. S., and Xu,  Y., 1997, “Elliptical Flexure Hinges,” Rev. Sci. Instrum., 68(3), pp. 1474–1483.
Lobontiu,  N., Paine,  J. S. N., Garcia,  E., and Goldfarb,  M., 2001, “Corner-Filleted Flexure Hinges,” ASME J. Mech. Des., 123, pp. 346–352.
Lobontiu,  N., and Paine,  J. S. N., 2002, “Design of Circular Cross-Section Corner-Filleted Flexure Hinges for Three-Dimensional Compliant Mechanisms,” ASME J. Mech. Des., 124, pp. 479–488.
Lobontiu, N., 2002, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, Boca Raton.
Saxena,  A., and Ananthasuresh,  G. K., 2001, “Topology Synthesis of Compliant Mechanisms for Non-Linear Forced-Deflection and Curved Path Specifications,” ASME J. Mech. Des., 123(1), pp. 33–42.
Xu,  D., and Anathasuresh,  G. K., 2003, “Freeform Skeletal Shape Optimization of Compliant Mechanisms,” ASME J. Mech. Des., 125(2), pp. 253–261.
Howell, L. L., 2001, Compliant Mechanisms, John Wiley & Sons, New York.
Howell,  L. L., and Midha,  A., 1995, “Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms,” ASME J. Mech. Des., 117(1), pp. 156–165.
Howell,  L. L., and Midha,  A., 1996, “A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms,” ASME J. Mech. Des., 118(1), pp. 121–125.
Kimball,  C., and Tsai,  L.-W., 2002, “Modeling of Flexural Beams Subjected to Arbitrary End Loads,” ASME J. Mech. Des., 124, pp. 223–235.
Bert,  C. W., and Wu,  S., 2003, “Dynamic Analysis of Nonlinear Torsional Flexible Couplings with Elastic Links,” ASME J. Mech. Des., 125(3), pp. 507–517.
Carricato,  M., Parenti-Castelli,  V., and Duffy,  J., 2001, “Inverse Static Analysis of a Planar System with Flexural Pivots,” ASME J. Mech. Des., 123, pp. 43–50.
Plosa,  J., and Wojcieh,  S., 2001, “Dynamics of Systems with Changing Configuration and with Flexible Beam-Like Links,” Mech. Mach. Theory, 35, pp. 1515–1534.
Gerardin, M., and Cardona, A., 2001, “Flexible Multibody Dynamics: A Finite Element Approach,” John Wiley & Sons, Chichester.
Adamiec-Wojcik,  I., and Wojcieh,  S., 1993, “Application of a Rigid Finite Element Method in Dynamic Analysis of Plane Manipulators,” Mech. Mach. Theory, 28, pp. 327–334.
Hac,  M., and Osinski,  J., 1995, “Finite Element Formulation of Rigid-Body Motion in Dynamic Analysis of Mechanisms,” Comput. Struct., 57(2), pp. 213–217.
Zivkovic,  M., Kojic,  M., Slavkovic,  R., and Grujovic,  N., 2001, “A General Beam Finite Element with Deformable Cross Section,” Comput. Methods Appl. Mech. Eng., 190, pp. 2651–2680.
Pilkey,  W. D., Kang,  W., and Schramm,  U., 1995, “New Structural Matrices for a Beam Element with Shear Deformation,” Finite Elem. Anal. Design, 19, pp. 25–44.
Reddy,  J. N., 1997, “On Locking-Free Shear Deformable Beam Finite Elements,” Comput. Methods Appl. Mech. Eng., 149, pp. 113–132.
Prokic,  A., 2002, “A New Finite Element for Analysis of Shear Lag,” Comput. Struct., 80, pp. 1011–1024.
Ortuzar,  J. M., and Samartin,  A., 1998, “Some Consistent Finite Element Formulations of 1-D Beam Models: A Comparative Study,” Adv. Eng. Software, 29, pp. 667–678.
Zhang,  S., and Fasse,  E., 2001, “A Finite-Element-Based Method to Determine the Spatial Stiffness Properties of a Notch Hinge,” ASME J. Mech. Des., 123, pp. 141–147.
Koster, M., 1998, “Constructieprincipes voor het Nauwkeurig Bewegen en Positioneren” Twente University Press The Netherlands.
Murin,  J., and Kutis,  V., 2002, “3D-Beam Element with Continuous Variation of the Cross-Sectional Area,” Comput. Struct., 80, pp. 329–338.
Jiang,  W.-G., and Henshall,  J. L., 2002, “A Coupling Cross-Section Finite Element Model for Torsion Analysis of Prismatic Bars,” Eur. J. Mech. A/Solids, 21, pp. 513–522.
Franciosi,  C., and Mecca,  M., 1998, “Some Finite Elements for the Static Analysis of Beams with Varying Cross Section,” Comput. Struct., 69, pp. 191–196.
Peterson, R. E., 1974, “Stress Concentration Factors,” John Wiley & Sons, New York.
Reddy, J. N., 2002, “Energy Principles and Variational Methods in Applied Mechanics,” John Wiley & Sons, Hoboken.
Petyt, M., 1990, “Introduction to Finite Element Vibration Analysis,” Cambridge University Press, Cambridge.
Young, W. C., 1989, “Roark’s Formulas for Stress and Strain,” McGraw-Hill, New York.
Bathe, K.-J., 1982, “Finite Element Procedures in Engineering Analysis,” Prentice Hall, Englewood Cliffs.


Grahic Jump Location
(a) Three-dimensional view of a microswitch device based on a bending hinge; (b) three-dimensional view of a MEMS device with torsional hinges
Grahic Jump Location
Geometric parameters defining the longitudinal profile of a circular flexure hinge
Grahic Jump Location
Three-node line element substituting a two-dimensional mesh in a regular finite element analysis
Grahic Jump Location
Nodal degrees of freedom for the three-node line finite element
Grahic Jump Location
Finite element model of the circular flexure hinge used for modal simulation
Grahic Jump Location
Nodal degrees of freedom for the fixed-fee analytic element




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In