Shabana, A. A., 1998, "*Dynamics of Multibody Systems*", Wiley, New York.

Shabana, A. A., 1998, “Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics,” Nonlinear Dyn.

[CrossRef], 16 , pp. 293–306.

Cardona, A., and Geradin, M., 1988, “A Beam Finite Element Non-Linear Theory With Finite Rotations,” Int. J. Numer. Methods Eng., 26 , pp. 2403–2438.

Shabana, A. A., and Yakoub, R. Y., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory,” J. Mech. Des.

[CrossRef], 123 , pp. 606–613.

Yakoub, R. Y., and Shabana, A. A., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications,” J. Mech. Des.

[CrossRef], 123 , pp. 614–621.

Mikkola, A. M., and Shabana, A. A., 2003, “A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications,” Multibody Syst. Dyn.

[CrossRef], 9 , pp. 283–309.

Berzeri, M., and Shabana, A. A., 2000, “Development of Simple Models for The Elastic Forces of The Absolute Nodal Coordinate Formulation,” J. Power Sources, 235 (4), pp. 539–565.

Sopanen, J. T., and Mikkola, A. M., 2003, “Description of Elastic Forces in Absolute Nodal Coordinate Formulation,” Nonlinear Dyn., 34 , pp. 53–74.

Campanelli, M., Berzeri, M., and Shabana, A. A., 2000, “Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems,” J. Mech. Des.

[CrossRef], 122 , pp. 498–507.

Omar, M. A., and Shabana, A. A., 2001, “A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation,” J. Sound Vib.

[CrossRef], 243 (3), pp. 565–576.

Escalona, J. L., Hussien, H. A., and Shabana, A. A., 1998, “Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics,” J. Sound Vib.

[CrossRef], 214 (5), pp. 833–851.

Hughes, T. J. R., 2000, "*The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", General Publishing, Ontario.

Rhim, J., and Lee, S. W., 1998, “A Vectorial Approach to Computational Modeling of Beams Undergoing Finite Rotations,” Int. J. Numer. Methods Eng., 41 , pp. 527–540.

Hauptmann, R., Doll, S., Harnau, M., and Schweizerhof, K., 2001, “Solid-Shell Elements with Linear and Quadratic Shape Functions at Large Deformations with Nearly Incompressible Materials,” Comput. Struct.

[CrossRef], 79 , pp. 1671–1685.

Sharf, I., 1999, “Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams,” Multibody Syst. Dyn.

[CrossRef], 3 , pp. 189–205.

Cook, R. D., 1981, "*Concepts and Applications of Finite Element Analysis*", Wiley, New York.

Bucalem, M. L., and Bathe, K.-J., 1995, “Locking Behavior of Isoparametric Curved Beam Finite Elements,” Appl. Mech. Rev., 48 , pp. 25–29.

Reddy, J. N., 1997, “On Locking-Free Shear Deformable Beam Finite Elements,” Comput. Methods Appl. Mech. Eng., 149 , pp. 113–132.

Shabana, A. A., 1994, "*Computational Dynamics*", Wiley, New York.

"*ANSYS User’s Manual*", 2001, Theory, Twelfth Edition, SAS IP, Canonsburg.

Wu, S.-C., and Haug, E. J., 1988, “Geometric Non-linear Substructuring for Dynamic of Flexible Mechanical Systems,” Int. J. Numer. Methods Eng., 26 , pp. 2211–2226.

Berzeri, M., Campanelli, M., and Shabana, A. A., 2001, “Definition of the Elastic Forces in the Finite-Element Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation,” Multibody Syst. Dyn.

[CrossRef], 5 , pp. 21–54.

Simo, J. C., and Vu-Quoc, L., 1986, “On the Dynamics of Flexible Beam Under Large Overall Motions—The Plane Case: Part II,” ASME J. Appl. Mech., 53 , pp. 855–863.

Berzeri, M., and Shabana, A. A., 2002, “Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn., 7 , pp. 357–387.

Dufva, K., Sopanen, J., and Mikkola, A., 2005, “A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation,” J. Sound Vib., 280 (3‐5), pp. 719–738.