0
TECHNICAL PAPERS

Fast Three-Dimensional Quasi-Static Analysis of Helical Gears Using the Finite Prism Method

[+] Author and Article Information
M. Guingand, J. P. de Vaujany, Y. Icard

Laboratoire de Dynamique des Machines et des Structures—CNRS UMR 5006, Institut National des Sciences Appliquées de Lyon, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex, France

J. Mech. Des 126(6), 1082-1088 (Feb 14, 2005) (7 pages) doi:10.1115/1.1798212 History: Received November 15, 2002; Revised February 01, 2004; Online February 14, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Von Eiff,  H., Hirschmann,  K. H., and Lechner,  G., 1990, “Influence of Gear Tooth Geometry on Tooth Stress of External and Internal Gears,” ASME J. Mech. Des., 112, pp. 575–583.
Shuting,  L., 2002, “Deformation and Bending Stress Analysis of a Three-Dimensional, Thin-Rimmed Gear,” ASME J. Mech. Des., 124, pp. 129–135.
Conry,  T. F., and Seireg,  A., 1971, “A Mathematical Programming Method for Design of Elastic Bodies in Contact,” J. Appl. Mech., 38, pp. 387–392.
Wagaj,  P., and Kahraman,  A., 2002, “Influence of Tooth Profile Modification on Helical Gear Durability,” ASME J. Mech. Des., 124, pp. 501–510.
Olakorede, A. A., and Play, D., 1991, “Load Sharing, Load Distribution and Stress Analysis of Cylindrical Gears by Finite Prism Method,” Design Productivity International Conference, Honoluiu, Hawaii, pp. 921–927.
Stegemiller,  M. E., and Houser,  D. R., 1993, “A Three-Dimensional Analysis of the Base Flexibility of Gear Teeth,” ASME J. Mech. Des., 115, pp. 186–192.
Vijayakar,  S. M., Rusby,  H. R., and Houser,  D. R., 1987, “Finite Element Analysis of Quasi-Prismatic Bodies Using Chebyshev Polynomials,” Int. J. Numer. Methods Eng., 24, pp. 1461–1477.
Elkholy, A. H., 1989, “Load Distribution on Contact Lines of Helical Gear Teeth,” Proc. International Power Transmission and Gearing Conference, ASME, 1 , pp. 135–142.
Vijayakar, S. M., and Houser, D. R., 1993, “Contact Analysis of Gears Using a Combined Finite Element and Surface Integral Method,” Gear Technology, pp. 26–33.
Wilcox,  L., and Coleman,  W., 1973, “Application of Finite Elements to the Analysis of Gear Tooth Stresses,” ASME J. Eng. Ind., 95, pp. 1139–1148.
Frater, J. L., and Kasuba, R., 1981, “Extended Load-Stress Analysis of Spur Gearing: Bending Strength Considerations,” International Symposium on Gearing & Power Transmissions. Tokyo, pp. 147–152.
Sun, H., Mavriplis, D., Huston, R. L., and Oswald, F. B., 1989, “Comparison of Boundary Element and Finite Element Method in Spur Gear Root Stress Analysis,” International Power Transmissions and Gearing Conference, ASME, 1 , pp. 163–166.
Baud,  S., and Velex,  P., 2002, “Static and Dynamic Tooth Loading in Spur and Helical Geared Systems-Experiments and Model Validation,” ASME J. Mech. Des., 124, pp. 334–346.
Kim, H. C., de Vaujany, J. P., Guingand, M., Bard, C., and et Play, D., 1995, “Effects of Rim, Web and Constraint Conditions on Stresses of External and Internal Cylindrical Gears,” International Congress-Gear Transmission’95, Sofia, Bugaria, Vol. 2, pp. 164–171.
de Vaujany, J. P., Kim, H. C., Guingand, M., and et Play, D., 1996, “Effect of Rim and Web on the Stresses of Internal Cylindrical Gears,” 7th International Power Transmission and Gearing Conference, ASME International, San Diego CA.
Olakorede, A. A., and Play, D., 1988, “Development of the Finite Prism Method in Computer: Aided Design of Spur Gears,” Proc. of thr fourth SAS, World Conf. FEMCAD, Paris, 17–19, Oct. 1988, Gournay-Sur-Marne (Fr.): IITT-International., Vol. 1, pp. 384–391.
Kantorovich, L. V., and Krylov, V. I., 1964, Approximate Method of Higher Analysis, Interscience Publishers New York, p. 681.
Cheung, Y. K., 1976, Finite Strip Method in Structure Analysis, Pergamon, Oxford, p. 233.
Olakorede, A., 1990, “Répartition de Charges et Résistance en Conception d’Engrenages Cylindriques, Application de la Méthode des Prismes Finis en C A O,” Thèse de Doctorat. Institut National des Sciences Appliquées de Lyon, p. 157.
Bishop, R. E. D., and Johnson, D. C., 1956, Vibration Analysis Tables, Cambridge University Press, London, p. 59.
Meirovitch, L., 1986, Elements of Vibration Analysis, 2nd ed., McGraw-Hill, New York, p. 560.
Boussinesq, J., 1885, Application des Potentiels à L’étude de L’équilibre et du Mouvement des Solides Élastiques, Gauthiers-Villard, Paris.
Kim, H.-C., 1996, “Distribution des Charges et des Contraintes Dans les Engrenages Cylindriques Avec Voile,” Thèse Doct. Institut National des Sciences Appliquées de Lyon, p. 151.

Figures

Grahic Jump Location
Displacements study (x direction)
Grahic Jump Location
Maximum main stress study
Grahic Jump Location
Computational process flowchart
Grahic Jump Location
Potential contact lines
Grahic Jump Location
Contact pressure for the kinematics position 1
Grahic Jump Location
Contact pressure during meshing on one helical tooth
Grahic Jump Location
Meshing stiffness variation
Grahic Jump Location
Principal stresses in tooth roots (kinematic position 5)
Grahic Jump Location
Picture of the test machine
Grahic Jump Location
Layout of the test machine
Grahic Jump Location
Meshing and boundary conditions
Grahic Jump Location
Stresses for the driven pinion, face width position 1

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In