0
TECHNICAL PAPERS

Local Metrics for Rigid Body Displacements

[+] Author and Article Information
Johannes K. Eberharter, Bahram Ravani

Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616

J. Mech. Des 126(5), 805-812 (Oct 28, 2004) (8 pages) doi:10.1115/1.1767816 History: Received August 01, 2003; Revised February 01, 2004; Online October 28, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Study, E., 1903, Geometrie der Dynamen—Die Zusammensetzung von Kräften und verwandte Gegenstände der Geometrie, Leipzig, Verlag und Druck von B. G. Teubner.
Ravani,  B., and Roth,  B., 1984, “Mappings of Spatial Kinematics,” ASME J. Mech. Transm., Autom. Des., 106, pp. 341–347.
Eberharter, J.K., Pottmann, H., and Ravani, B., 2003, “Stereographic Projection of Study’s Quadric,” Proceedings—Dresden Symposium Geometry: CK, TU Dresden (Institut für Geometrie).
Ravani,  B., and Roth,  B., 1983, “Motion Synthesis Using Kinematic Mappings,” ASME J. Mech. Transm., Autom. Des., 105, pp. 460–467.
Larochelle, P., 2000, “Approximate Motion Synthesis via Parametric Constraint Manifold Fitting,” Proc. of Advances in Robot Kinematics (ARK), Piran, Slovenia.
Larochelle, P., and Dees, S., 2002, “Approximate Motion Synthesis using an SVD-based Distance Metric,” Proceedings of the 8th International Symposium on Advances in Robot Kinematics (ARK), Caldes de Malavella, Spain, June 24–28.
Ge,  Q. J., and Ravani,  B., 1994, “Computer Aided Geometric Design of Motion Interpolants,” ASME J. Mech. Des., 116, pp. 756–762.
Blaschke,  W., 1912, “Euklidische Kinematik und nichteuklidische Geometrie I.II.,” Zeitschrift für Mathematik und Physik,pp. 61–91, (corrections pp. 203–204).
Blaschke, W., 1960, Kinematik und Quaternionen, VEB Deutscher Verlag der Wissenschaften, Berlin.
McCarthy, J. M., 1990, An Introduction to Theoretical Kinematics, The MIT Press.
Kazerounian, K., and Rastegar, J., 1992, “Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements,” Proceedings of ASME Design Technical Conferences, 47, Flexible Mechanisms, Dynamics, and Analysis.
Martinez-Rico,  J. M., and Duffy,  J., 1995, “On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies,” ASME J. Mech. Des., 117, pp. 41–47.
Park,  F. C., 1995, “Distance Metric on the Rigid-Body Motions With Applications to Mechanism Design,” Trans. ASME, 117, pp. 48–54.
Jüttler, B., 1994, “Rationale Bézierdarstellung räumlicher Bewegungsvorgänge und ihre Anwendung zur Beschreibung bewegter Objekte,” Dissertation, Technische Hochschule Darmstadt.
Jüttler, B., 1995, “Spatial Rationale Motions and their Application in Computer Aided Geometric Design,” Mathematical Methods for Curves and Surfaces, M. Dæhlen, T. Lyche, and L. L. Schumaker, eds., pp. 271–280.
Gupta,  K. C., 1997, “Measures of Positional Error for a Rigid Body,” ASME J. Mech. Des., 119, pp. 346–348.
Etzel,  K. R., and McCarthy,  J. M., 1996, “A Metric for Spatial Displacements Using Biquaternions on SO(4),” Proceedings of the IEEE Robotics and Automation Conferences,4, pp. 3185–3190.
Etzel,  K. R., and McCarthy,  J. M., 1999, “Interpolation of Spatial Displacements Using the Clifford Algebra of E4,” ASME J. Mech. Des., 121, pp. 39–44.
Larochelle, P. 2000, “On the Geometry of Approximate Bi-Invariant Projective Displacement Metrics,” Proc. of the World Congress on the Theory of Machines and Mechanisms, Oulu, Finland.
McCarthy,  J. M., 1983, “Planar and Spatial Rigid Motion as Special Cases of Spherical and 3-Spherical Motion,” ASME J. Mech. Transm., Autom. Des., 105(3), pp. 569–575.
Chirikjian,  G. S., and Zhou,  S., 1998, “Metrics on Motion and Deformation of Solid Models,” ASME J. Mech. Des., 120, pp. 252–261.
Lin,  Q., and Burdick,  J. W., 2000, “Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies,” Int. J. Robot. Res., 19(6), pp. 612–625.
Park, F. C., Murray, A. P., and McCarthy, J. M., 1993, “Design Mechanisms for Workspace Fit,” Angeles, J., et al., eds., Computational Kinematics, Kluwer Academic Publishers, pp. 295–306.
Wallner, J., 2002, “Some Properties of Invariant Metrics in Lie-Groups,” (private communication).
Žefran,  M., and Kumar,  V., 1998, “Interpolation Schemes for Rigid Body Motions,” Comput.-Aided Des., 30(3), pp. 179–189.
Fanghella,  P., and Galletti,  C., 1995, “Metric Relations and Displacement Groups in Mechanism and Robot Kinematics,” ASME J. Mech. Des., 117, pp. 470–478.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North-Holland Publishing Company, Amsterdam New York Oxford.
Ge,  Q. J., and Ravani,  B., 1994, “Geometric Construction of Bézier Motions,” ASME J. Mech. Des., 116, pp. 749–755.
Wampler,  C. W., 1996, “Forward Displacement of General Six-In-Parallel SPS (Stewart) Platform Manipulators Using Soma Coordinates,” Mech. Mach. Theory, 31(3), pp. 331–337.
Husty, M. L., Karger, A., Sachs, H., and Steinhilper, W., 1997, Kinematik und Robotik, Springer-Verlag, Berlin, Germany.
Gfrerrer, A., 2000, “Study’s Kinematic Mapping—A Tool for Motion Design,” Lenarčic̄, J. and Stanis̄ić, M. M., eds., Advances in Robot Kinematics (ARK), pp. 7–16.
Beck, H., 1919, Über lineare Somenmannigfaltigkeiten, Bonn.
Gfrerrer, A., 2001, “Study’s Kinematic Mapping,” Institute of Geometry, Graz University of Technology, (private communication).
Weiss, E. A., 1935, “Einführung in die Liniengeometrie und Kinematik,” Teubners Mathematische Leitfäden Band, 41 , Leipzig und Berlin, Verlag und Druck von B. G. Teubner.
Chasles,  M., 1831, “Note sur les propriétés générales du système de deux corps semblables entre eux, placés d’une manière quelconque dans l’espace; et sur le déplacement fini, ou infiniment petit d’un corps solide libre,” Bulletin des Sciences Mathématiques de Férussac,XIV, pp. 321–336.
Pottmann, H., and Wallner, J., 2001, Computational Line Geometry, Springer-Verlag Berlin Heidelberg.
Weiss,  G., 1983, “Zur Euklidischen Differentialgeometrie der Regelflächen,” Resultate der Mathematik,6(2), pp. 220–250.
Arnold, V. I., 1989, Mathematical Methods of Classical Mechanics, Second Edition, Springer-Verlag, New York.
Hofer, M., Pottmann, H., and Ravani, B., 2002, “From Curve Design Algorithms to Motion Design,” Technical Report No. 95, Technical University of Vienna.
Chaikin,  G. M., 1974, “An Algorithm for High-Speed Curve Generation,” Comput. Graph. Image Process., 3, pp. 346–349.
Dyn, N., 1989, “Interpolation and Approximation by Radial and Related Functions,” Chui, C. K., Schumaker, L. L., Ward, J. D., eds., Approximation Theory VI, Vol. 1, Academic Press, pp. 211–234.
Hoschek, J., and Lasser, D., 1993, Fundamentals of Computer Aided Geometric Design, A. K. Peters, Ltd..
Eberharter, J. K., and Ravani, B., 2003, “Local Metrics for Rigid Body Displacements,” Bernhard Roth Symposium, Stanford. http://synthetica.eng.uci.edu/mccarthy/BernieRothCD/BRMenu.html

Figures

Grahic Jump Location
A simplistic schematic of the principal hyperbolic shape of Study’s quadric, with its three-dimensional linear subspaces—generators, and the excluded pseudo-generator 3.
Grahic Jump Location
Optimized stereographic projection at the example of a sphere
Grahic Jump Location
New protosoma Q0, minimizing the helical parameter φi
Grahic Jump Location
Definition of the metric with a stereographic projection, and the Euclidean norm, at the example of a sphere
Grahic Jump Location
The metric is not right-invariant
Grahic Jump Location
Without optimization (Qi,i=1,[[ellipsis]]4 are given somen, Q̄0 is the protosoma)
Grahic Jump Location
With optimization (Q0 is the new protosoma after optimization)
Grahic Jump Location
Not optimized and optimized somen motion using the Chaikin algorithm (The darkblue lines represent the motion with optimized projection)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In