0
TECHNICAL BRIEFS

A Study of Displacement Distribution in a Piezoelectric Heterogeneous Bimorph

[+] Author and Article Information
Qiang Li, Michael Lovell, Junfeng Mei, William Clark

Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 e-mail: mlovell+@pitt.edu

J. Mech. Des 126(4), 757-762 (Aug 12, 2004) (6 pages) doi:10.1115/1.1759362 History: Received June 01, 2003; Revised January 01, 2004; Online August 12, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Itoh,  T., and Suga,  T., 1993, “Development of a Force Sensor for Atomic Force Microscopy Using Piezoelectric Thin Films,” Nanotechnology, 4, pp. 218–224.
Luginbuhl,  Ph., Racine,  G. A., Lerch,  Ph., Romanowicz,  B., Brooks,  K. G., de Rooij,  N. F., Renaud,  Ph., and Setter,  N., 1996, “Piezoelectric Cantilever Beams Actuated by PZT sol-gel Thin Film,” Sens. Actuators, A, 54, pp. 530–535.
Smits,  Jan G., and Choi,  Wai-shing, 1991, “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 383(), May, pp. 256–270.
Smits,  Jan G., and Dalke,  Susan I., and Cooney,  Thomas K., 1991, “The Constituent Equations of Piezoelectric Bimorphs,” Sens. Actuators, A, 28, pp. 41–61.
Yocum,  Matthew, and Abramovich,  Haim, 2002, “Static Behavior of Piezoelectric Actuated Beams,” Comput. Struct., 80, pp. 1797–1808.
Saravanos,  Dimitris A., and Heyliger,  Paul R., 1999, “Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells,” Appl. Mech. Rev., 52(10), pp. 305–319.
Hwang,  Woo-Seok, and Park,  Hyun Chul, 1993, “Finite Element Modeling of Piezoelectric Sensors and Actuators,” AIAA J., 31(5), May, pp. 930–937.
Cappelleri,  D. J., Frecker,  M. I., Simpson,  T. W., and Snyder,  A., 2002, “Design of a PZT Bimorph Actuator using a Metamodel-based Approach,” ASME J. Mech. Des., 124, pp. 354–357.
Devoe,  D. L., and Pisano,  A. P., 1997, “Modeling and Optimal Design of Piezoelectric Cantilever Microactuators,” J. Microelectromech. Syst., 6(3), pp. 266–270.
Allik,  H., and Hughes,  J. R., 1970, “Finite Element Method for Piezoelectric Vibration,” Int. J. Numer. Methods Eng., 2, pp. 151–157.
Borrelli,  A., and Patria,  M. C., 1999, “Saint-Veanat’s Principle for a Piezoelectric Body,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math., 59(3), pp. 1098.
Benjeddou,  A., Trindade,  M. A., and Ohayon,  R., 1997, “A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms,” J. Intell. Mater. Syst. Struct., 8, pp. 1012–1025.
Krommer,  M., and Irschik,  H., 2002, “An Electromechanically Coupled Theory for Piezoelastic Beams Taking into Account the Charge Equations of Electrostatics,” Acta Mech., 154, pp. 141–158.
Krommer,  M., and Irschik,  H., 1999, “On the Influence of the Electric Field on Free Transverse Vibration of Smart Beams,” Smart Mater. Struct., 8, pp. 401–410.
Krommer,  M., 2001, “On the Correction of the Bernoulli-Euler Beam Theory for Smart Piezoelectric Beams,” Smart Mater. Struct., 10, pp. 668–680.
Mouturet,  V., and Nogarede,  B., 2002, “Optimal Dimensioning of a Piezoelectric Bimorph Actuator,” European Physical Journal of Applied Physics, 17, pp. 107–118.
Muralt,  P., 2000, “Ferroelectric Thin Films for Micro-Sensors and Actuators: a Review,” J. Micromech. Microeng., 10, pp. 136–146.
Smits,  J. G., and Choi,  W.-S., 1991, “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38(3), pp. 256–270.
Smits, J. G., and Dalke, S. I., 1989, “The Constituent Equations of Piezoelectric Bimorphs,” IEEE-Ultrasonic Symposium, pp. 781–784.
Elka, E., Elata, D., and Abramovich, 2003, “The Electromechanical Response of Multi-Layered Piezoelectric Structures,” TME Report No. 478, Faculty of Mechanical Engineering, Technion, I.I.T., 32000 Halfa, Israel, July.

Figures

Grahic Jump Location
Deflection distribution of the cantilever beam: (a) deflection distribution with different n(d31=1.71e-10 C/N) (b) deflection distribution with different d31(n=PZT/steel)
Grahic Jump Location
Comparison of the analytical and FEM results: (a) PZT/steel structure (b) PZT/copper structure (c) PZT/aluminum structure
Grahic Jump Location
Comparison of analytical and numerical tip deflection values as a function of the Young’s modulus ratio n
Grahic Jump Location
Comparison of analytical and numerical tip deflection values as a function of beam thickness ratio f
Grahic Jump Location
Tip deflection (μm) as a function of thickness ratio (hL/hu)
Grahic Jump Location
Two-layer PZT beam: (a) basic structure of the PZT beam (b) internal moments and forces between layers of PZT beam deformed under voltage load

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In