0
TECHNICAL PAPERS

Design Optimization for Structural-Acoustic Problems Using FEA-BEA With Adjoint Variable Method

[+] Author and Article Information
Jun Dong, Kyung K. Choi

Fellow ASMEe-mail: kkchoi@ccad.uiowa.eduDepartment of Mechanical and Industrial Engineering and Center for Computer-Aided Design, The University of Iowa, Iowa City, IA 52242

Nam H. Kim

Department of Mechanical and Aerospace Engineering, The University of Florida, PO Box 116300, Gainesville, FL 32611-6300

J. Mech. Des 126(3), 527-533 (Oct 01, 2003) (7 pages) doi:10.1115/1.1701879 History: Received October 01, 2002; Revised October 01, 2003
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hughes, T. J. R., 1987, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.
Kythe, P. K., 1995, Introduction to Boundary Element Methods, CRS Press, Florida.
Lyon, R., 1975, Statistical Energy Analysis of Dynamical Systems: Theory and Application, The MIT Press, Cambridge, MA.
Rybak,  S. A., 1972, “Waves in Plate Containing Random Inhomogeneities,” Sov. Phys. Acoust.,17(3), pp. 345–349.
Nefske,  D. J., and Sung,  S. H., 1989, “Power Flow Finite-Element Analysis of Dynamic-Systems—Basic Theory and Application to Beams,” ASME J. Vibr., Acoust., Stress, Reliab. Des., 111(1), pp. 94–100.
Bernhard,  R. J., and Huff,  J. E., 1999, “Structural-Acoustic Design at High Frequency Using the Energy Finite Element Method,” ASME J. Vibr. Acoust., 121(3), pp. 295–301.
Vlahopoulos,  N., Garza-Rios,  L. O., and Mollo,  C., 1999, “Numerical Implementation, Validation, and Marine Applications of an Energy Finite Element Formulation,” J. Ship Res., 43(3), pp. 143–156.
Gockel, M. A., 1983, MSC/NASTRAN Handbook for Dynamic Analysis, The MacNeal-Schwendler Corporation, 815 Colorado Blvd., Los Angeles, CA.
COMET/ACOUSTICS User’s Manual, Automated Analysis Corporation.
Ma,  Z.-D., and Hagiwara,  I., 1991, “Sensitivity Analysis-Method for Coupled Acoustic-Structural Systems Part 2: Direct Frequency-Response and Its Sensitivities,” AIAA J., 29, pp. 1796–1801.
Choi,  K. K., Shim,  I., and Wang,  S., 1997, “Design Sensitivity Analysis of Structure-Induced Noise and Vibration,” ASME J. Vibr. Acoust., 119, pp. 173–179.
Nefske,  D. J., Wolf,  J. A., and Howell,  L. J., 1982, “Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment: A Review of Current Practice,” J. Sound Vib., 80, pp. 247–266.
Salagame,  R. R., Belegundu,  A. D., and Koopman,  G. H., 1995, “Analytical Sensitivity of Acoustic Power Radiated From Plates,” ASME J. Vibr. Acoust., 117, pp. 43–48.
Scarpa,  F., 2000, “Parametric Sensitivity Analysis of Coupled Acoustic-Structural Systems,” ASME J. Vibr. Acoust., 122, pp. 109–115.
Smith,  D. C., and Bernhard,  R. J., 1992, “Computation of Acoustic Shape Design Sensitivity Using a Boundary Element Method,” ASME J. Vibr. Acoust., 114, pp. 127–132.
Cunefare,  K. A., and Koopman,  G. H., 1992, “Acoustic Design Sensitivity for Structural Radiators,” ASME J. Vibr. Acoust., 114, pp. 179–186.
Kane,  J. H., Mao,  S., and Everstine,  G. C., 1991, “Boundary Element Formulation for Acoustic Shape Sensitivity Analysis,” J. Acoust. Soc. Am., 90, pp. 561–573.
Matsumoto,  T., Tanaka,  M., and Yamada,  Y., 1995, “Design Sensitivity Analysis of Steady-State Acoustic Problems Using Boundary Integral Equation Formulation,” JSME Int. J., Ser. C, 38, pp. 9–16.
Kim,  N. H., Dong,  J., Choi,  K. K., Vlahopoulos,  N., Ma,  Z.-D., Castanier,  M. P., and Pierre,  C., 2003, “Design Sensitivity Analysis for Sequential Structural-Acoustic Problems,” J. Sound Vib., 26(33), June, pp. 569–591.
Kim, N. H., Choi, K. K., Dong, J., Pierre, C., Vlahopoulos, N., Ma, Z.-D., and Castanier, M., 2001, “A Sequential Adjoint Variable Method in Design Sensitivity Analysis of NVH Problems,” ASME International Mechanical Engineering Congress and Exposition (IMECE’01), November 11–16, New York, NY.
Chang,  K. H., Choi,  K. K., Tsai,  C. S., Chen,  C. J., Choi,  B. S., and Yu,  X., 1995, “Design Sensitivity Analysis and Optimization Tool (DSO) for Shape Design Applications,” Computing Systems in Engineering,6(2), pp. 151–175.
Vanderplaats, G. N., 1997, DOT User’s Manual, VMA Corp., Colorado Springs, CO.
Horvath, J., 1966, Topological Vector Spaces and Distributions, Addison-Wesley, London.
Dimarogonas, A. D., 1976, Vibration Engineering, West Publishing Co., St. Paul, MN.

Figures

Grahic Jump Location
Element design sensitivity plot w.r.t. panel thickness
Grahic Jump Location
Design variable history
Grahic Jump Location
Acoustic pressure distribution inside cabin (initial design at 93.6 Hz and optimum design at 93.7 Hz)
Grahic Jump Location
Design constraints history in the frequency range between 93.3 and 94.3 Hz
Grahic Jump Location
Sound pressure level frequency response at driver’s ear position (initial design and optimum design)
Grahic Jump Location
Computational procedure of FEA-BEA optimization
Grahic Jump Location
Sound pressure level (SPL) frequency response at driver’s ear position (at initial design)
Grahic Jump Location
Sound pressure plot at 93.6 Hz: 77.78 dB at driver’s ear position (at initial design)
Grahic Jump Location
Vehicle structure FE model and acoustic BE model of the cabin part

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In