A Non-Incremental Nonlinear Finite Element Solution for Cable Problems

[+] Author and Article Information
Hiroyuki Sugiyama

Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL 60607

Aki M. Mikkola

Department of Mechanical Engineering, Lappeenranta University of Technology, Skinnarilankatu 34, 53851 Lappeenranta, Finland

Ahmed A. Shabana

Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607

J. Mech. Des 125(4), 746-756 (Jan 22, 2004) (11 pages) doi:10.1115/1.1631569 History: Received January 01, 2002; Revised March 01, 2003; Online January 22, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Rohrs,  J. H., 1851, “On the Oscillations of a Suspension Cable,” Trans. Cambridge Philos. Soc., 9, pp. 379–398.
Routh, E. J., 1955, Advanced Rigid Dynamics, Dover.
Saxon,  D. S., and Cahn,  A. S., 1953, “Modes of Vibration of a Suspended Chain,” Q. J. Mech. Appl. Math., 6, pp. 273–285.
Irvine,  H. M., and Caughey,  T. K., 1974, “The Linear Theory of Free Vibration of a Suspended Cable,” Proc. R. Soc. London, Ser. A, 341, pp. 299–315.
Irvine, H. M., 1981, Cable Structures, MIT Press.
Soler,  A. I., 1970, “Dynamic Response of Single Cables with Initial Sag,” J. Franklin Inst., 290, pp. 377–387.
Carrier,  G. F., 1945, “On the Non-Linear Vibration Problem of the Elastic String,” Q. J. Mech. Appl. Math., 3, pp. 157–165.
Luongo,  A., Rega,  G., and Vestroni,  F., 1984, “Planar Non-Linear Free Vibrations of an Elastic Cable,” Int. J. Non-Linear Mech., 19, pp. 39–52.
Perkins,  N. C., and Mote,  C. D., 1987, “Three-Dimensional Vibration of Traveling Elastic Cables,” J. Sound Vib., 114, pp. 325–340.
West,  H. H., Geschwindner,  L. F., and Suhoski,  J. E., 1975, “Natural Vibrations of Suspension Cables,” J. Struct. Div. ASCE 101, pp. 2277–2291.
Winget,  J. M., and Huston,  R. L., 1976, “Cable Dynamics—A Finite Segment Approach,” Comput. Struct., 6, pp. 475–480.
Huston, R. L., 1990, Multibody Dynamics, Butterworth-Heinemann.
Kamman,  J. W., and Huston,  R. L., 2001, “Multibody Dynamics Modeling of Variable Length Cable Systems,” Multibody Syst. Dyn., 5, pp. 211–221.
Ablow,  C. M., and Schechter,  S., 1983, “Numerical Simulation of Undersea Cable Dynamics,” Ocean Eng., 10, pp. 443–457.
Behbahani-Nejad,  M., and Perkins,  N. C., 1999, “Numerical Analysis of Nonlinear Wave Propagation in Elastic Submerged Cables,” ASME J. Offshore Mech. Arct. Eng., 121, pp. 116–125.
Tjavaras,  A. A., Zhu,  Q., Liu,  Y., Triantafyllou,  M. S., and Yue,  D. K. P., 1998, “The Mechanics of Highly-Extensible Cables,” J. Sound Vib., 213, pp. 709–737.
Henghold,  W. M., and Russell,  J. J., 1976, “Equilibrium and Natural Frequencies of Cable Structures (A Nonlinear Finite Element Approach),” Comput. Struct., 6, pp. 267–271.
Gambhir,  M. L., and Batchelor,  B. de V., 1978, “Parametric Study of Free Vibration of Sagged Cables,” Comput. Struct., 8, pp. 641–648.
Ali,  H. M., and Abdel-Ghaffar,  A. M., 1995, “Modeling the Nonlinear Seismic Behavior of Cable-Stayed Bridges with Passive Control Bearings,” Comput. Struct., 54, pp. 461–492.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall.
Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd edition, Cambridge University Press.
Omar,  M. A., and Shabana,  A. A., 2001, “A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems,” J. Sound Vib., 243, pp. 565–576.
Meirovitch L., 1967, Analytical Methods in Vibrations, Macmillan.
Irvine,  H. M., and Griffin,  J. H., 1976, “On the Dynamic Response of a Suspended Cable,” International Journal of Earthquake Engineering and Structural Dynamics,4, pp. 389–402.
Shabana,  A. A., and Yakoub,  R. Y., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements,” ASME J. Mech. Des., 123, pp. 606–621.
Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, 3rd edition, John Wiley & Sons.
Skop,  R. A., and Choo,  Y.-I., 1971, “The Configuration of a Cable Towed in a Circular Path,” J. Aircr., 8, pp. 856–862.
Russell,  J. J., and Anderson,  W. J., 1977, “Equilibrium and Stability of a Circularly Towed Cable Subjected to Aerodynamic Drag,” J. Aircr., 14, pp. 680–686.
Zhu,  F., and Rahn,  C. D., 1998, “Stability Analysis of a Circularly Towed Cable-Body System,” J. Sound Vib., 217, pp. 435–452.
Shampine, L., and Gordon, M., 1975, Computer Solution of Ordinary Differential Equations: The Initial Value Problem, W.H. Freeman.


Grahic Jump Location
Nondimensional natural frequencies for small sagged cable 5: a. the first symmetric mode, b. the first antisymmetric mode, c. the second symmetric mode, d. the second antisymmetric mode.
Grahic Jump Location
Beam element in the absolute nodal coordinate formulation
Grahic Jump Location
Sagged cable subjected to ground excitation
Grahic Jump Location
Transverse deflection at mid-span (a=1.0 m/s2)
Grahic Jump Location
Transverse deflection at mid-span (a=10.0 m/s2)
Grahic Jump Location
Deformed shapes of the falling cable pendulum
Grahic Jump Location
Vertical displacement of cable tip
Grahic Jump Location
Energy balance: -▪-, kinetic energy; -•-, strain energy; -▴-, potential energy; -○-, total energy.
Grahic Jump Location
Element coordinate system
Grahic Jump Location
Mode shapes and natural frequencies: (a) linearized ANCF, •, (b) analytical solution 5; –.
Grahic Jump Location
The cable system under investigation
Grahic Jump Location
Motion simulation (ω=18.0 rad/s)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In