Distribution of Wrench-Twist Duality in Over-Constrained Mechanisms

[+] Author and Article Information
M. Fayet

Equipe de Mécanique générale-Laboratoire de Mécanique des Solides, Ba⁁timent 302, INSA, 20 Ave A. Einstein, 69621 Villeurbanne Cedex-Francee-mail: mgfayet@insa-lyon.fr

J. Mech. Des 125(1), 81-91 (Mar 21, 2003) (11 pages) doi:10.1115/1.1541629 History: Received June 01, 2000; Revised March 01, 2002; Online March 21, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Fayet,  M., 1995, “Mécanismes multiboucles III-Hyperstatisme au sens de la Dynamique et au sens de la cinématique- Dualité,” Mech. Mach. Theory, 30, pp. 233–251.
Philips,  J. R., and Hunt,  K. H., 1964, “On the Theorem of Three Axes in the Spatial Motion of Three Bodies,” Aust. Appl. Scie., 156, pp. 267–287.
Waldron,  K. J., 1966, “The Constraint Analysis of Mechanisms,” J. Mec., 1(2), pp. 101–104.
Davies, T. H., and Primerose, J. F., 1971, “An Algebra for the Screw System of Pairs of Bodies in a Kinematic Chain,” Third World Congress for the Theory of Machines and Mechanisms, Kupary, Yugoslavia, Vol. D, paper D. 14, pp. 199–212.
Baker,  J. E., 1980, “On the Relative Freedom Between Links in Kinematic Chains with Cross Jointing,” Mech. Mach. Theory, 15, pp. 397–413.
Fayet,  M., 1995, “Mécanismes multiboucles I-Détermination des espaces de torseurs cinématiques dans un mécanisme,” Mech. Mach. Theory, 30, pp. 201–217.
Lipkin, H., and Duffy, J., 1982, “Analysis of Industial Robots via the Theory of Screws,” Proceedings of the 4th International Symposium on Theory and Practice of Robots Manipulators, Paris, pp. 359–370.
Lipkin, H., and Duffy, J., 1984, “On the Geometry of Orthogonal and Reciprocal Screws,” 5th Symposium on Theory and Practice of Robots Manipulators, Udine Italy, June.
Lipkin,  H., Duffy,  J., 1985, “The Elliptic Polarity of Screws,” ASME J. Mech., Transm., Autom. Des., 107 .
Holzmann,  W., and Mac Carthy,  M., 1985, “Computing the Friction Forces Associated with a Three-Fingered Grasp,” IEEE J. Rob. Autom., RA-1 (4).
Kerr, D. R., 1984, “An Analysis of Multi-Fingered Hand,” Ph.D. dissertation. Department of Mechanical Engineering. Stanford University.
Romdhane,  L., and Duffy,  J., 1990, “Kinestatic Analysis of Multi-Fingered Hands,” Int. J. Robot. Res., 9 (6).
Loncaric,  J., 1982, “Normal Forms of Stiffness and Compliance Matrices,” IEEE J. Rob. Autom., RA-3 (6).
Fayet,  M., and Bonnet,  P., 1995, “Mécanismes multiboucles II-Processus de détermination du rang des équations de liaison. Distribution des mobilités,” Mech. Mach. Theory, 30, pp. 219–232.


Grahic Jump Location
From simple to triple Koenigs joint
Grahic Jump Location
Triangular projection relative to vertex 1
Grahic Jump Location
Non over-constrained mechanism
Grahic Jump Location
Mechanism of which the graph is complete
Grahic Jump Location
Equivalent triangular graphs
Grahic Jump Location
Graph associated with the triple Koenigs joint
Grahic Jump Location
Triple Koenigs joint in a singular configuration
Grahic Jump Location
Wrenches statically admissible with edge e




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In