0
TECHNICAL PAPERS

The VOF-G/FEV Model For Tracking a Polymer-Air Interface in the Injection Moulding Process

[+] Author and Article Information
R. Ayad

Groupe Mecanique, Materiaux et Structures (GMMS), EA 2617 3MPAC, ESIEC, Esp. Roland Garros, BP1029, 51686 Reims, Francee-mail: rezak@univ-reims.fr

A. Rigolot

Laboratoire de Modelisation en Mecanique (LMM), UMR-CNRS N° 7607 Universite Pierre et Marie Curie (Paris VI) 4 place Jussieu Tour 66, 75252 Paris, France

J. Mech. Des 124(4), 813-821 (Nov 26, 2002) (9 pages) doi:10.1115/1.1515323 History: Received October 01, 2000; Online November 26, 2002
Copyright © 2002 by American Institute of Physics
Your Session has timed out. Please sign back in to continue.

References

Fortin, A., 1984, “Méthodes d’Éléments Finis pour les Équations de Navier-Stokes,” thèse de Doctorat, Université Laval, Quebec, Canada.
Wang,  K. K., 1994, “Twenty Years of CIMP Research Towards CAE for Injection Molding,” Adv. CAE Polymer. Process., 49, pp. 1–5.
Van Der Lelij,  A. J., 1998, “Simulation of Injection Moulding Using Solid Elements,” British Plastics and Rubbers, pp. 24–27.
Haagh,  G. A. A. H., and Van De Vosse,  F. N., 1998, “Simulation of Three-Dimensional Polymer Using a Pseudo-Concentration Method,” Int. J. Numer. Methods Fluids, 28, pp. 1355–1369.
Hétu,  J. F., Gao,  D. M., Garcia-Rejon,  A., and Salloum,  G., 1998, “3D Finite Element Method for the Simulation of the Filling Stage in Injection Moulding,” Polym. Eng. Sci., 38(2), pp. 223–236.
Pichelin,  E., and Coupez,  T., 1998, “Finite Element Solution of the 3D Mold Filling Problem for Viscous Incompressible Fluid,” Comput. Methods Appl. Mech. Eng., 163, pp. 359–371.
Thompson,  E., 1986, “Use of Pseudo-Concentration to Follow Creeping Viscous Flow During Transient Analysis,” Int. J. Numer. Methods Fluids, 6, pp. 749–761.
Hirt,  C. W., and Nichols,  B. D., 1981, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” J. Comput. Phys., 39, pp. 201–225.
Dhatt,  G., Gao,  D. M., and Ben Cheikh,  A., 1990, “A Finite Element Simulation of Metal Flow in Moulds,” Int. J. Numer. Methods Fluids, 30, pp. 821–831.
Gao D. M., 1991, “Modélisation Numérique du Remplissage des Moules de Fonderie par la Méthode des Éléments finis,” PhD thesis, Université de Technologie de Compiègne.
Hieber,  C. A., and Chiang,  H. H., 1989, Rheol. Acta, 28, p. 321.
Swaminathan,  C. R., and Voller,  V. R., 1994, “A Time-Implicit Filling Algorithm,” Appl. Math. Model., 18, pp. 101–108.
Voller,  V. R., and Peng,  S., 1995, “An Algorithm for Analysis of Polymer Filling of Molds,” Polym. Eng. Sci., 35(22), pp. 1758–1765.
Mashayek,  F., and Ashgriz,  N., 1995, “Advection of Axisymmetric Interfaces by the Volume of Fluid Method,” Int. J. Numer. Methods Fluids, 20, pp. 1337–1361.
Rudman,  M., 1997, “Volume-Tracking Methods for Interfacial Flow Calculations,” Int. J. Numer. Methods Fluids, 24, pp. 671–691.
Osmani,  A. S., Cross,  J. T., and Lewis,  R. W., 1992, “A Finite Element Model for the Simulations of the Mould Filling in Metal Casting and the Associated Heat Transfer,” Int. J. Numer. Methods Eng., 35, pp. 787–806.
Fortin A. and Béliveau A., 1995, “Numerical Solution of Transport Equations with Applications to Non-Newtonian Fluids,” Trends in Applications of Mathematics to Mechanics, M. D. P Monteiro Marques and J. F. Rodigues, eds.
Abbès, B., 2000, Modélisation Numérique 3D Volumique du Remplissage des Moules d’Injection,” Thèse de Doctorat, Université de Reims Champagne-Ardenne, Reims, France.
Abbès,  B., Ayad,  R., and Rigolot,  A., 1999, “Une Méthode de Pseudo-Concentration pour la Simulation 3D Volumique du Remplissage de Moules d’Injection,” Revue Européenne des Eléments Finis, 8(7), pp. 695–724.
Onteniente J. P., 1996, “Mise en Forme de Nouveaux Matériaux d’Emballages Issus de Matières Premières Végétales,” PhD Thesis, University of Reims, France.

Figures

Grahic Jump Location
Mould cavity domain and its boundaries
Grahic Jump Location
Relation between F and G
Grahic Jump Location
Finite element meshes and corresponding control volume
Grahic Jump Location
Classical triangular and quadrilateral 2D Finite elements
Grahic Jump Location
Classical hexahedral Q2-Q1 and P1+/P0 element1
Grahic Jump Location
Flow problem between two rotating cylinders
Grahic Jump Location
Meshing of 14 of the domain
Grahic Jump Location
Front position-time curve. Numerical and analytical comparison.
Grahic Jump Location
Evolution of flow front shapes
Grahic Jump Location
Flow front in double inlet cavity
Grahic Jump Location
Evolution of the flow front in the cavity
Grahic Jump Location
Front position vs time. Comparisons between numerical and analytical solutions.
Grahic Jump Location
Step cavity problem: geometry and boundary conditions
Grahic Jump Location
Mesh data: 410 hexahedral P1+/P0 elements
Grahic Jump Location
Evolution of flow front
Grahic Jump Location
Mesh data: 1272 Hexahedral P1+/P0 elements
Grahic Jump Location
Shear viscosity of plastic starch at 130°C with 10% water content
Grahic Jump Location
Comparison between measured and computed polymer fronts: (a) experimental short-shots (b), (c), (d) numerical results

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In