Full Sliding Adhesive-Like Contact of V-Belts

[+] Author and Article Information
Göran Gerbert

Machine and Vehicle Design, Chalmers University of Technology, 412 96 Göteborg, Sweden

Francesco Sorge

Mechanics and Aeronautics, University of Palermo, 90128 Palermo, Italy

J. Mech. Des 124(4), 706-712 (Nov 26, 2002) (7 pages) doi:10.1115/1.1514662 History: Received January 01, 2001; Online November 26, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Euler,  L., 1762, “Remarques sur l’Effet du Frottement dans l’Equilibre,” Mém. Acad. Sci., Berlin, pp. 256–278.
Grashof, F., 1883, Theoretische Maschinenlehre, Band 2, Leopold Voss, Hamburg.
Gerbert, G., 1972, “Force and Slip Behaviour in V-Belt Drives,” Mech. Eng. Series, No. 67, Acta Polytechnica Scandinavica, Helsinki.
Gerbert, G., 1999, “Traction Belt Mechanics,” Machine and Vehicle Design, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Sorge,  F., 1996, “A Qualitative-Quantitative Approach to V-Belt Mechanics,” ASME J. Mech. Des., 118, pp. 15–21.
Lutz,  O., 1960, “Zur Theorie des Keilscheiben-Umschlingungsgetriebes,” Konstruktion, 12(7), pp. 265–268.
Dolan,  J. P., and Worley,  S. W., 1985, “Closed Form Approximations to the Solution of V-Belt Force and Slip Equations,” ASME J. Mech., Transm., Autom. Des., 107, pp. 292–300.
Halbmann, W., 1986, “Zum Schlupf Kraftschlüssiger Umschlingungsgetriebe,” Fortschrittberichte VDI, Reihe 1, No 145, VDI-Verlag, Düsseldorf.
Sorge, F., 1999, “Limit Performances of V-Belt Drives,” Proceedings of the CVT ’99 Congress, Eindhoven, The Netherlands, pp. 260–265.
Sorge, F., 1999, “Boundary V-Belt Mechanics,” Proceedings of the XIV AIMETA Congress, Como, Italy.


Grahic Jump Location
Forces acting on a belt element
Grahic Jump Location
Cross-section and acting forces
Grahic Jump Location
Driven solution. μ=0.4,β=18°,c*=0.325,εP=0.01,γP=0°,θP=0.1132608035002335,|θ|min.=10−8.
Grahic Jump Location
Driver solution. μ=0.4,β=18°,c*=0.325,εP=0.01,γP=350°,θP=0.1341502960273819,|θ|min.=10−7.
Grahic Jump Location
Details from driven solutions. μ=0.4,β=18°,c*=0.325,εP=0.01,γP=0°.
Grahic Jump Location
Details from driver solutions. μ=0.4,β=18°,c*=0.325,εP=0.01,γP=350°.
Grahic Jump Location
(a),(b),(c) Penetration and sliding angles. Γ=γ−π,μ=0.4,β=18°,c*=0.325,x*P=0.01,θP=−0.0001,θP=0. (a) tan γP=7.619057392770625D-3 (driven p). (b) tan γP=7.619075D-3 (indefinite penetration) (c) tan γP=7.619091946827087D-3 (driver p).




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In