Optimal Trajectory Planning For Material Handling of Compliant Sheet Metal Parts

[+] Author and Article Information
Huifang Li

General Motors Corporation, Warren, MI 48092email: huifang.li@gm.com

Dariusz Ceglarek

Department of Industrial Engineering, University of Wisconsin-Madison, Madison, WI 57306e-mail: darek@engr.wisc.edu

J. Mech. Des 124(2), 213-222 (May 16, 2002) (10 pages) doi:10.1115/1.1463035 History: Received October 01, 2000; Online May 16, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Li, D., Ceglarek, D., and Shi, J., 1993, “Sliding Door Process Variation Study,” Technical Report, University of Michigan, Ann Arbor.
Ceglarek,  D., and Shi,  J., 1995, “Dimensional Variation Reduction for Automotive Body Assembly,” Manufacturing Review, 8(2), pp. 139–154.
Wu, X., Shi, J., and Hu, S., 1996, “On-Site Measurement and Process Monitoring for Stamping Variation Reduction,” Technical Report, the 2mm Program, NIST-Advanced Technology Program, pp. 61–80.
Ceglarek,  D., Li,  H. F., and Tang,  Y., 2001, “Modeling and Optimization of Fixture For Handling Compliant Sheet Metal Parts,” ASME J. Manuf. Sci. Eng., 123(3), pp. 473–480.
Li,  H. F., Ceglarek,  D., and Shi,  J., 2002, “A Dexterous Part Holding Model for Handling Compliant Sheet Metal Parts,” ASME J. Manuf. Sci. Eng., 123(1), pp. 109–118.
Sprow,  E., 1991, “Sheet Metal FMS: Too Big a Jump,” Tooling and Production, 57(7), pp. 53–55.
Erdmann,  M., and Lozano-Perez,  T., 1987, “On Multiple Moving Objects,” Algorithmica, 2(4), pp. 477–521.
Sutner,  K., and Maass,  W., 1988, “Motion Planning among Time Dependent Obstacles,” Acta Informatica, 26, pp. 93–122.
Brady, M., Hollerbach, J., Johnson T., Lozano-Perez, T., and Mason, M., 1982, Robot Motion: Planning and Control. MIT Press, Cambridge.
Latombe, J. C., 1991, Robot Motion Planning, Kluwer Academic Publishers (SECS0124), Boston/Dordrecht/London.
Laumond, J.-P., 1998, Robot Motion Planning and Control, Springer-Verlag, London Ltd.
Fujimura,  K., and Samet,  H., 1989, “Hierarchical Strategy for Path Planning Among Moving Obstacles,” IEEE Trans. Rob. Autom., 5(1), pp. 61–69.
Fraichard,  T., 1999, “Trajectory Planning in a Dynamic Workspace: a ‘State-Time Space’ Approach,” Advanced Robotics, 13(1), pp. 75–94.
Constantinescu,  D., and Croft,  E. A., 2000, “Smooth and Time-Optimal Trajectory Planning for Industrial Manipulators along Specified Paths,” J. Rob. Syst., 17(5), pp. 223–249.
Kahn,  M. E., and Roth,  B., 1971, “The Near-Minimum-Time Control of Open-Loop Articulated Kinematic Chains,” ASME J. Dyn. Syst., Meas., Control, 93, pp. 164–172.
Croft,  E. A., Benhabib,  B., and Fenton,  R. G., 1995, “Near-Time Optimal Robot Motion Planning for On-Line Applications,” J. Rob. Syst., 12, pp. 553–567.
Bobrow,  J. E., Dubowsky,  S., and Gibson,  J. S., 1985, “Time-Optimal Control of Robotic Manipulators along Specified Paths,” Int. J. Robot. Res., 4(3), pp. 3–17.
Shiller,  Z., 1994, “On Singular Time-Optimal Control Along Specified Paths,” IEEE J. Rob. Autom., 10(4), pp. 561–566.
Chen,  Y., and Desrochers,  A. A., 1990, “A Proof of The Structure of The Minimum-Time Control Law of Robotic Manipulators Using a Hamiltonian Formulation,” IEEE Trans. Rob. Autom., 6(3), pp. 388–393.
Chiang, A. C., 1992, Elements of Dynamic Optimization, McGraw-Hill Inc.
Jutard-Malinge,  A. D., and Bessonnet,  G., 1997, “Optimal Path Planning of Manipulatory Systems Subjected to Non-Autonomous Motion Laws,” Robotica 15, pp. 251–261.
Shin,  K. G., and McKay,  N. D., 1986, “A Dynamic Programming Approach to Trajectory Planning of Robotic Manipulators,” IEEE Trans. Autom. Control, AC-31(6), pp. 491–500.
Yen,  C. W. V., and Liu,  T. Z., 1998, “Path Constrained Time-Optimal Trajectory Planning for X-Y Robots via an Efficient Dynamic Programming Method,” Robotica, 16, pp. 89–96.
Zheng,  Y. F., and Chen,  M. Z., 1994, “Trajectory Planning for Two Manipulators to Deform Flexible Beams,” Robotics and Autonomous Systems, 12(1–2), pp. 55–67.
Lamiraux, F., and Kavraki, L. E., 1999, “Path Planning for Elastic Plates Under Manipulation Constraints,” Proc. IEEE Int. Conf. on Robotics & Automation, pp. 151–156.
Chen,  M. Z., and Zheng,  Y. F., 1995, “Vibration-Free Handling of Deformable Beams by Robot End-Effectors,” J. Rob. Syst., 12(5), pp. 331–347.
Yuen, K. M., and Bone, G. M., 1996, “Robotic Assembly of Flexible Sheet Metal Parts,” Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1511–1516.
Leissa, A. W., 1969, Vibration of Plates, Scientific and Technical Information Division, Office of Technology Utilization, National Aeronautics and Space Administration.
Roark, R. J., 1989, Roark’s Formulas for Stress and Strain, McGraw-Hill Inc.
Wu, C. F. J., Hamada, M., 2000, Experiments: Planning, Analysis, and Parameter Design Optimization, John Wiley and Sons.
Fourer, R., Gay, D. M., and Kernighan B. W., 1993, AMPL: A Modeling Language for Mathematical Programming, Scientific Press.
Conn, A. R., Gould, N. I. M., and Toint, Ph. L., 1992, Lancelot: A Fortran Package for Large-Scale Nonlinear Optimization (Release A), Springer-Verlag Inc.
Conn, A. R., Coulman, P. K., Haring, R. A., Morril, G. L., and Visweswariach, C., 1996, “Optimization of Custom MOS Circuits by Transistor Sizing,” 1996 IEEE/ACM International Conference on Computer-Aided Design, IEEE 1063-6757/96, pp. 174–180.
Conn,  A. R., Gould,  N. I. M., and Toint,  Ph. L., 1996, “Numerical Experiments with the LANCELOT Package (Release A) for Large-scale Nonlinear Optimization,” Math. Program., 73, pp. 73–110.


Grahic Jump Location
Yield boundary and the maximum deflection boundary
Grahic Jump Location
Optimal paths with different maximum deflection specifications
Grahic Jump Location
Examples of trajectory planning among three obstacles
Grahic Jump Location
Acceleration profile when the maximum deflection is 60 mm
Grahic Jump Location
Optimal trajectory when the maximum deflection is 30 mm
Grahic Jump Location
Optimal trajectory with jerk constraint
Grahic Jump Location
Schematic plot of compliant part transfer in a stamping line
Grahic Jump Location
An example of a sheet metal blank with end effector layout
Grahic Jump Location
Geometry mesh of the sample blank
Grahic Jump Location
An example of displaced mesh with ax=−10 m/s2,az=10 m/s2
Grahic Jump Location
Data fitting for the maximum von Mises stress
Grahic Jump Location
Data fitting for the maximum part deflection
Grahic Jump Location
Diagram of system configuration
Grahic Jump Location
Outline of the optimization methodology
Grahic Jump Location
Examples of part deflection constraint



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In