Bendsøe, M. P., and Kikuchi, N., 1998, “Generating Optimal Topologies in Structural Design Using a Homogenization Method,” Comput. Methods Appl. Mech. Eng., 71 (2), pp. 197–224.

[CrossRef]Bendsøe, M. P., 1995, "*Optimization of Structural Topology, Shape, and Material,*"Springer, Berlin.

Diaz, A., and Sigmund, O., 1995, “Checkerboard Patterns in Layout Optimization,” Struct. Optim., 10 , pp. 40–45.

[CrossRef]Jog, C. S., and Haber, R. B., 1996, “Stability of Finite Element Models for Distributed-Parameter Optimization and Topology Design,” Comput. Methods Appl. Mech. Eng., 130 , pp. 203–226.

[CrossRef]Sigmund, O., 1994, “Design of Material Structures Using Topology Optimization,” DCAMM Report S.69, Department of Solid Mechanics, Ph.D. thesis, DTU, Denmark.

Sigmund, O., 2007, “Morphology-Based Black and White Filters for Topology Optimization,” Struct. Multidiscip. Optim., 33 , pp. 401–424.

[CrossRef]Poulsen, T. A., 2003, “A New Scheme for Imposing a Minimum Length Scale in Topology Optimization,” Int. J. Numer. Methods Eng., 57 , pp. 741–760.

[CrossRef]Guest, J. K., Prévost, J. H., and Belytschko, T., 2004, “Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions,” Int. J. Numer. Methods Eng., 61 , pp. 238–254.

[CrossRef]Rahmatalla, S. F., and Swan, C. C, 2004, “A Q4/Q4 Continuum Structural Topology Optimization Implementation,” Struct. Multidiscip. Optim., 27 , pp. 130–135.

[CrossRef]Yoon, G. H., Kim, Y. Y., Bendsøe, M. P., and Sigmund, O., 2004, “Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage,” Struct. Multidiscip. Optim., 27 , pp. 139–150.

[CrossRef]Saxena, R., and Saxena, A., 2003, “On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms,” "*ASME Design Engineering Technical Conferences, Design Automation Conference*", Chicago, IL, Sep. 2–6, 2003, Paper No. DETC2002/DAC-48806.

Saxena, R., and Saxena, A., 2007, “On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms,” Finite Elem. Anal. Design, 43 (14), pp. 1082–1098.

[CrossRef]Langelaar, M., 2007, “The Use of Convex Uniform Honeycomb Tessellations in Structural Topology Optimization,” "*Proceedings of the 7th World Congress on Structural and Multidisciplinary Optimization*", Seoul, South Korea, May 21–25, 2007.

Talischi, C., Paulino, G. H., and Chau, H. Le, 2009, “Honeycomb Wachspress Finite Elements for Structural Topology Optimization,” Struct. Multidiscip. Optim., 37 (6), pp. 569–583.

[CrossRef]Cook, R. D., 1995, "*Finite Element Modeling For Stress Analysis*", Wiley, New York.

Yin, L., and Ananthasuresh, G. K., 2001, “Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme,” Struct. Multidiscip. Optim., 23 , pp. 49–62.

[CrossRef]Sethian, J. A., and Wiegmann, A., 2000, “Structural Boundary Design via Level Set and Immersed Interface Methods,” J. Comput. Phys., 163 (2), pp. 489–528.

[CrossRef]Wang, M. Y., Chen, S. K., Wang, X. M., and Mei, Y. L., 2005, “Design of Multimaterial Compliant Mechanisms Using Level-Set Methods,” ASME J. Mech. Des., 127 , pp. 941–956.

[CrossRef]Luo, J. Z., Luo, Z., Chen, S. K., Tong, L. Y., and Wang, M. Y., 2008, “A New Level Set Method for Systematic Design of Hinge-Free Compliant Mechanisms,” Comput. Methods Appl. Mech. Eng., 198 , pp. 318–331.

Allaire, G., Jouve, F., and Toader, A-M., 2004, “Structural Optimization Using Sensitivity Analysis and a Level-Set Method,” J. Comput. Phys., 194 , pp. 363–393.

[CrossRef]Hull, P. V., and Canfield, S., 2006, “Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA,” ASME J. Mech. Des., 128 , pp. 337–348.

[CrossRef]Svanberg, K., and Werme, M., 2007, “Sequential Integer Programming Methods for Stress Constrained Topology Optimization,” Struct. Multidiscip. Optim., 34 , pp. 277–299.

[CrossRef]Stolpe, M., and Svanberg, K., 2003, “Modelling Topology Optimization Problems as Linear Mixed 0–1 Programs,” Int. J. Numer. Methods Eng., 57 , pp. 723–739.

[CrossRef]Saxena, A., 2009, “A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization,” ASME J. Mech. Des., 130 (8), p. 082304

[CrossRef].

Jakiela, M. J., Chapman, C., Duda, J., Adewuya, A., and Saitou, K., 2000, “Continuum Structural Topology Design With Genetic Algorithms,” Comput. Methods Appl. Mech. Eng., 186 , pp. 339–356.

[CrossRef]Jain, C., and Saxena, A., 2009, “An Improved Material-Mask Overlay Strategy for Topology Optimization of Structures and Compliant Mechanisms,” ASME J. Mech. Des., 132 , p. 061006.

[CrossRef]Gilat, A., 2004, "*MATLAB: An Introduction With Applications*", 2nd ed., Wiley, New York.

Kreyszig, E., 1999, "*Advanced Engineering Mathematics*", 8th ed., Wiley, New York.

Rai, A. K., Saxena, A., and Mankame, N. D., 2009, “Unified Synthesis of Compact Planar Path-Generating Linkages With Rigid and Deformable Members,” Struct. Multidiscip. Optim., 41 , pp. 863–879.

[CrossRef]Rai, A. K., Saxena, A., and Mankame, N. D., 2007, “Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements,” ASME J. Mech. Des., 129 , pp. 1056–1063.

[CrossRef]Reddy, B. V. S., Nagendra, and Saxena., A., 2010, “Automated Design Of Contact-Aided Compliant Mechanisms Using Initially Curved Frame Elements,” "*ASME Design Engineering and Technical Conferences*", Montreal, Canada, Aug. 15–18, 2009, Paper No. DETC-29172.

Chandrupatla, T. R., and Ashok, D. B., 1996, "*Introduction to Finite Elements in Engineering*", Prentice-Hall, Englewood Cliffs, NJ.

Deepak, S. R., Dinesh, M., Sahu, D. K., and Ananthasuresh, G. K., 2009, “A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms,” ASME J. Mech. Rob., 1 , p. 011003.

Saxena, A., and Ananthasuresh, G. K., 2000, “On an Optimal Property of Compliant Topologies,” Struct. Multidiscip. Optim., 19 , pp. 36–49.

[CrossRef]Hetrick, J. A., and Kota, S., 1999, “An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms,” ASME J. Mech. Des., 121 (2), pp. 229–234.

[CrossRef]Chen, S., and Wang, M. Y., 2007, “Designing Distributed Compliant Mechanisms With Characteristic Stiffness,” "*Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference*", Paper No. DETC2007–34437.

Rahmatalla, S., and Swan, C. C., 2005, “Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization,” Int. J. Numer. Methods Eng., 62 , pp. 1579–1605.

[CrossRef]Kobayashi, M., Nishiwaki, S., Izui, K., and Yoshimura, M., 2009, “An Innovative Design Method for Compliant Mechanisms Combining Structural Optimisations and Designer Creativity,” J. Eng. Design, 20 (2), pp. 125–154.

[CrossRef]