0
TECHNICAL PAPERS

Numerical Computation of Differential-Algebraic Equations for Non-Linear Dynamics of Multibody Systems Involving Contact Forces

[+] Author and Article Information
B. Fox

Parallel Computing Research Laboratory, Department of Electrical and Electronic Engineering, The University of Western Australia, Perth, W.A. 6907e-mail: budfox@ee.uwa.edu.au

L. S. Jennings

Centre for Applied Dynamics and Optimization, The University of Western Australia, Perth, W.A. 6907e-mail: les@maths.uwa.edu.au

A. Y. Zomaya

Parallel Computing Research Laboratory, Department of Electrical and Electronic Engineering, The University of Western Australia, Perth, W.A. 6907e-mail: zomaya@ee.uwa.deu.au

J. Mech. Des 123(2), 272-281 (Mar 01, 1999) (10 pages) doi:10.1115/1.1353587 History: Received March 01, 1999
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pereira, M. F. O. S., and Ambrosio, J. A. C., Eds., 1994, Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, Kluwer Academic, NATO ASI Series, Vol. 268, Boston.
Ryan, R. R., 1990, ADAMS-Multibody System Analysis Software, Multibody Systems Handbook, Springer-Verlag, Berlin.
Smith, R. C., and Haug, E. J., 1990, DADS—Dynamic Analysis and Design System. Multibody Systems Handbook, Springer-Verlag, Berlin.
Simeon, B., Fuhrer, C., and Rentrop, R., 1991, Differential-Agebraic Equations in Vehicle System Dynamics, Surveys on Mathematics for Industry, Springer-Verlag, Berlin.
Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier Science, New York, NY.
Shabana, A. A., 1994, Computational Dynamics, Wiley, New York.
Nakanishi,  T., and Shabana,  A. A., 1994, “Contact Forces in the Nonlinear Dynamic Analysis of Tracked Vehicles,” Int. J. Numer. Comput. Methods Eng., 37, 1251–1275.
Nakanishi,  T., and Shabana,  A. A., 1994, “On the Numerical Solution of Tracked Vehicle Dynamic Equations,” Nonlinear Dyn., 6, pp. 391–417.
Sarwar,  M. K., Nakanishi,  T., and Shabana,  A. A., 1995, “Chain Link Deformation in the Nonlinear Dynamics of Tracked Vehicles,” J. Vib. Control, 1, pp. 201–224.
Petzold, L. R., and Hindmarsh, A. C., LSODAR, Computing and Mathematics Research Division, 1-316 Lawrence Livermore National Laboratory, Livermore, CA 94550.
Ascher, U. M., and Petzold, L. R., 1992, Numerical Methods for Boundary Value Problems in Differential-Algebraic Equations, Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, G. D. Byrne and W. E. Schiesser, Eds., World Scientific, New Jersey.
Gear,  C. W., and Petzold,  L. R., 1984, “ODE Methods for the Solution of Differential/Algebraic Systems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 21, No. 4, August.
Petzold,  L. R., 1982, “Differential/Algebraic Equations are not ODEs,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 3, No. 3, September.
Petzold, L. R., 1983, A Description of DASSL: A Differential/Algebraic System Solver, Scientific Computing, R. Stepleman et al., Eds., North-Holland, Amsterdam.
Petzold, L. R., 1991, Methods and Software for Differential-Algebraic Systems, NATO ASI Series, Vol. F 69, Real Time Integration Methods for Mechanical System Simulation, E. J. Haug, Ed., Springer-Verlag, Berlin, Heidelberg.
Petzold,  L. R., Ren,  Y., and Maly,  T., 1997, “Regularization of Higher-Index Differential-Algebraic Equations with Rank-Deficient Constraints,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 18, No. 3, pp. 753–774, May.
Yen,  J., and Petzold,  L. R., 1998, “An Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multibody Dynamic Systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 19, No. 5, pp. 1513–1534, September.
Byrne, G. D., and Schiesser, W. E., 1992, An Overview of Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, Recent Development in Numerical Methods and Software for ODEs/DAEs/PDEs, G. D. Byrne and W. E. Schiesser, Eds., World Scientific, New Jersey.
Gear, C. W., 1991, An Introduction to Numerical Methods for ODEs and DAEs, NATO ASI Series, Vol. F 69. Real Time Integration Methods for Mechanical System Simulation, E. J. Haug, Ed., Springer-Verlag, Berlin, Heidelberg.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff, The Netherlands.
Sears, F. W., Zemansky, M. W., and Young, H. D., 1987, University Physics, 7th Ed., Addison-Wesley.

Figures

Grahic Jump Location
(a) Wheel ground contact geometry; (b) track link roller contact geometry; (c) track link idler contact geometry; (d) track link sprocket tooth geometry; (e) track link pin sprocket tooth contact geometry; (f ) track link ground contact geometry
Grahic Jump Location
(a) Aircraft towing truck; (b) N-link pendulum; (c) track vehicle; (d) truck chassis position versus time; (e) truck chassis orientation versus time; (f ) track vehicle system initial configuration; (g) track vehicle system later configuration; (h) integrator comparison

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In