0
RESEARCH PAPERS

Stabilization Method for Numerical Integration of Multibody Mechanical Systems

[+] Author and Article Information
Shih-Tin Lin, Ming-Chong Hong

Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan, R.O.C

J. Mech. Des 120(4), 565-572 (Dec 01, 1998) (8 pages) doi:10.1115/1.2829316 History: Received December 01, 1997; Revised August 01, 1998; Online December 11, 2007

Abstract

The object of this study is to solve the stability problem for the numerical integration of constrained multibody mechanical systems. The dynamic equations of motion of the constrained multibody mechanical system are mixed differential-algebraic equations (DAE). In applying numerical integration methods to this equation, constrained equations and their first and second derivatives must be satisfied simultaneously. That is, the generalized coordinates and their derivatives are dependent. Direct integration methods do not consider this dependency and constraint violation occurs. To solve this problem, Baumgarte proposed a constraint stabilization method in which a position and velocity terms were added in the second derivative of the constraint equation. The disadvantage of this method is that there is no reliable method for selecting the coefficients of the position and velocity terms. Improper selection of these coefficients can lead to erroneous results. In this study, stability analysis methods in digital control theory are used to solve this problem. Correct choice of the coefficients for the Adams method are found for both fixed and variable integration step size.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In