Synthesis of Programmable Mechanisms Using Adjustable Dyads

[+] Author and Article Information
T. Chuenchom

Department of Mechanical Engineering, Thammasat University, Pathumthani 12121, Thailand

S. Kota

Design Laboratory, Department of Mechanical Engineering & Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109

J. Mech. Des 119(2), 232-237 (Jun 01, 1997) (6 pages) doi:10.1115/1.2826241 History: Received April 01, 1995; Revised January 01, 1997; Online December 11, 2007


Conventional hard automation such as linkage mechanisms and cam-driven mechanisms provide high speed capability at a low cost, but fail to provide the flexibility required in many industrial applications. On the other hand, for most manufacturing automation applications in high production industries, expensive multi-axis robots are employed for simple repetitive operations that require only limited flexibility. In order to provide a true middle ground between conventional mechanism-based hard automation and overly flexible anthropomorphic robots, we incorporate flexibility in conventional mechanisms, thereby creating “programmable mechanisms” or Adjustable Robotic Mechanisms (ARMs). This paper introduces the concept of ARMs and presents generalized analytical methods for designing adjustable mechanisms based on synthesis of adjustable dyads. The synthesis methods presented here, which are extensions of the well-known Burmester precision point theory, enable one to design multi-purpose mechanisms for multiple sets of precision points, thereby enabling conventional mechanisms to perform multiple tasks. The analytical synthesis method has been implemented in a computer program that generates all adjustable dyad solutions for given sets of precision points. Two or more adjustable dyads are assembled together to form a programmable linkage mechanism that performs multiple tasks. Synthesis formulations and a design example illustrating the analytical and computer-aided synthesis methods are presented.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In