Electromechanical Ski Release Binding With Mechanical Backup

[+] Author and Article Information
M. L. Hull, M. Swanstrom, B. Wade

Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616-5294

J. Mech. Des 119(1), 145-148 (Mar 01, 1997) (4 pages) doi:10.1115/1.2828779 History: Received November 01, 1995; Revised August 01, 1996; Online January 18, 2008


To better protect Alpine skiers against injuries to both the lower leg and the knee, the objective of this work was to design a binding which: (1) maintained a consistent release level in twist in the presence of combined loads; (2) released the heelpiece based on the anterior/posterior (A/P) bending moment transmitted by the leg; and (3) modulated the release level in twist depending on the degree of contraction in muscles crossing the knee. To fulfill the objective, a conventional ski binding was modified. Modifications included integrating dynamometers into the toepiece, anti-friction device (AFD), and heelpiece. The toepiece sensor indicates the twisting moment while the AFD and heelpiece sensors indicate the anterior bending moment transmitted by the leg. To gain electronic control of binding release, a solenoid actuated mechanism was added which translated the heelpiece rearward along the ski to decouple the boot from the binding. Otherwise, the binding allowed normal mechanical function. Prototype testing confirmed the ability of the dynamometers to accurately measure desired loads in the presence of extraneous loads and the reliability of the solenoid actuated mechanism in releasing the hoot under loads typical of skiing. Thus, this work demonstrated the feasibility of hybrid electromechanical/mechanical releasable bindings. Such a demonstration should encourage the development of designs for commercial use.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In