0
RESEARCH PAPERS

Inverse Kinematics of Serial-Chain Manipulators

[+] Author and Article Information
Hong-You Lee, Charles F. Reinholtz

Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0238

J. Mech. Des 118(3), 396-404 (Sep 01, 1996) (9 pages) doi:10.1115/1.2826899 History: Received December 01, 1992; Revised August 01, 1995; Online December 11, 2007

Abstract

This paper proposes a unified method for the complete solution of the inverse kinematics problem of serial-chain manipulators. This method reduces the inverse kinematics problem for any 6 degree-of-freedom serial-chain manipulator to a single univariate polynomial of minimum degree from the fewest possible closure equations. It is shown that the univariate polynomials of 16th degree for the 6R, 5R-P and 4R-C manipulators with general geometry can be derived from 14, 10 and 6 closure equations, respectively, while the 8th and 4th degree polynomials for all the 4R-2P, 3R-P-C, 2R-2C, 3R-E and 3R-S manipulators can be derived from only 2 closure equations. All the remaining joint variables follow from linear equations once the roots of the univariate polynomials are found. This method works equally well for manipulators with special geometry. The minimal properties may provide a basis for a deeper understanding of manipulator geometry, and at the same time, facilitate the determination of all possible configurations of a manipulator with respect to a given end-effector position, the determination of the workspace and its subspaces with the different number of configurations, and the identification of singularity positions of the end-effector. This paper also clarifies the relationship between the three known solutions of the general 6R manipulator as originating from a single set of 14 equations by the first author.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In