Mesh Reduction Using an Angle Criterion Approach

[+] Author and Article Information
M. Asif Khan

Automated Analysis Corporation, Peoria, IL

Judy M. Vance

Department of Mechanical Engineering, Iowa State University, Ames, IA

J. Mech. Des 118(2), 300-305 (Jun 01, 1996) (6 pages) doi:10.1115/1.2826884 History: Received May 01, 1995; Revised February 01, 1996; Online December 11, 2007


Surface polygonization is the process by which a representative polygonal mesh of a surface is constructed for rendering or analysis purposes. This work presents a new surface polygonization algorithm specifically tailored to be applied to a large class of models which are created with parametric surfaces having triangular meshes. This method has particular application in the area of building virtual environments from computer-aided-design (CAD) models. The algorithm is based on an edge reduction scheme that collapses two vertices of a given triangular polygon edge onto one new vertex. A two step approach is implemented consisting of boundary edge reduction followed by interior edge reduction. A maximum optimization is used to determine the location of the new vertex. The criterion that is used to control how well the approximate surface represents the actual surface is based on examining the angle between surface normals. The advantage of this approach is that the surface discretization is a function of two, user-controlled variables, a boundary edge angle error and a surface edge angle error. The method presented here differs from existing methods in that it takes advantage of the fact that for many models, the exact surface representation of the model is known before the polygonization is attempted. Because the precise surface definition is known, a maximum optimization procedure, that uses the surface information, can be used to locate the new vertex. The algorithm attempts to overcome the deficiencies in existing techniques while minimizing the number of triangular polygons required to represent a surface and still maintaining surface integrity in the rendered model. This paper presents the algorithm and testing results.

Copyright © 1996 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In