An Inverse Force Analysis of a Tetrahedral Three-Spring System

[+] Author and Article Information
P. Dietmaier

Institute for Mechanics, Technical University Graz, Graz, Austria

J. Mech. Des 117(2A), 286-291 (Jun 01, 1995) (6 pages) doi:10.1115/1.2826136 History: Received February 01, 1994; Revised January 01, 1995; Online December 11, 2007


A tetrahedral three-spring system under a single load has been analyzed and a closed-form solution for the equilibrium positions is given. Each of the three springs is attached at one end to a fixed pivot in space while the other three ends are linked by a common pivot. The springs are assumed to behave in a linearly elastic way. The aim of the paper at hand was to find out what the maximum number of equilibrium positions of such a system might be, and how to compute all possible equilibrium configurations if a given force is applied to the common pivot. First a symmetric and unloaded system was studied. For such a system it was shown that there may exist a maximum of 22 equilibrium configurations which may all be real. Second the general, loaded system was analyzed, revealing again a maximum of 22 real equilibrium configurations. Finally, the stability of this three-spring system was investigated. A numerical example illustrates the theoretical findings.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In