Design Variation Simulation of Thick-walled Cylinders

[+] Author and Article Information
R. J. Eggert

Mechanical Engineering Department, Union College, Schenectady, NY 12308

J. Mech. Des 117(2A), 221-228 (Jun 01, 1995) (8 pages) doi:10.1115/1.2826126 History: Received July 01, 1993; Revised June 01, 1994; Online December 11, 2007


Thick-walled cylinders exposed to high, static internal pressures may experience both elastic and plastic deformation. Primary design considerations include loads, geometry and material properties. However, variations in geometry and material properties due to conventional manufacturing processes, and variations of internal pressure due to actual usage patterns, propagate through the system resulting in off-design stresses and strains which may cause failure. These variations can be evaluated using probabilistic methods which are discussed in this paper. Von Mises-distortion energy yield theory is presented to predict elastic, plastic and residual stresses in thick-walled cylinders. The design variation simulation method using Monte Carlo simulation and available statistical information is used to design a pressure vessel for servo-hydraulic experiments. The use of autofrettage to induce favorable compressive stresses at the inner bore, thereby improving the margin of safety and overall reliability, is also presented.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In