Distance Metrics on the Rigid-Body Motions with Applications to Mechanism Design

[+] Author and Article Information
F. C. Park

Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92717

J. Mech. Des 117(1), 48-54 (Mar 01, 1995) (7 pages) doi:10.1115/1.2826116 History: Received September 01, 1994; Online January 25, 2008


In this article we examine the problem of designing a mechanism whose tool frame comes closest to reaching a set of desired goal frames. The basic mathematical question we address is characterizing the set of distance metrics in SE(3), the Euclidean group of rigid-body motions. Using Lie theory, we show that no bi-invariant distance metric (i.e., one that is invariant under both left and right translations) exists in SE(3), and that because physical space does not have a natural length scale, any distance metric in SE(3) will ultimately depend on a choice of length scale. We show how to construct left- and right-invariant distance metrics in SE(3), and suggest a particular left-invariant distance metric parametrized by length scale that is useful for kinematic applications. Ways of including engineering considerations into the choice of length scale are suggested, and applications of this distance metric to the design and positioning of certain planar and spherical mechanisms are given.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In