The Linear Approximated Equation of Vibration of a Pair of Spur Gears (Theory and Experiment)

[+] Author and Article Information
Y. Cai, T. Hayashi

Precision and Intelligence Laboratory, (Research Laboratory of Precision Machinery and Electronics), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 227 Japan

J. Mech. Des 116(2), 558-564 (Jun 01, 1994) (7 pages) doi:10.1115/1.2919414 History: Received August 01, 1991; Online June 02, 2008


The nonlinear equation for the rotational vibration of a pair of spur gears has a restriction that the analytical solution of the equation cannot be obtained. In this paper, the linear equation of vibration is derived theoretically and its physical model, i.e., the linear model of vibration is presented. The analytical solution of the linear equation, which is derived by analytical method, agrees well with the numerically calculated result by the nonlinear equation. By analyzing the analytical solution of the linear equation in detail, we clarified the relation between the waveforms of the vibration and the profile error of gear pairs, and also found that the effect of the contact ratio to the vibration is large and complex. The equivalent error, accounting for effects of the static load, the time-varying stiffness, and the profile error of gear pairs, is proposed in this paper. It can be considered as promising for evaluating the profile error, because the vibration of gear pairs is excited mainly by the equivalent error. Finally, for confirming the above results, the vibration of two tested gear pairs has been measured by an experimental set-up for this purpose.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In