0
RESEARCH PAPERS

An Optimization-Based Framework for Simultaneous Plant-Controller Redesign

[+] Author and Article Information
R. Beyers, S. Desa

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

J. Mech. Des 116(2), 396-404 (Jun 01, 1994) (9 pages) doi:10.1115/1.2919392 History: Received October 01, 1989; Revised September 01, 1991; Online June 02, 2008

Abstract

In this paper we develop a framework for the redesign of computer-controlled, closed-loop, mechanical systems for improved dynamic performance. A central notion which underlies the redesign framework is that, in order to achieve the best possible performance from a constrained closed-loop system, the plant and controller should be designed simultaneously. The framework is presented as the formulation and solution of a progression of optimization problems which establish the limits of performance of the dynamic system under various conditions of interest, thereby enabling the engineer to systematically establish the various redesign possibilities. Using a second order linear dynamic system and a nonlinear controller as an example, we demonstrate the application of the framework and substantiate the idea that in order to achieve the best possible performance from a constrained closed-loop system, the plant and controller should be redesigned simultaneously. We then show how the redesign framework can be used to select the best control strategy for a robotic manipulator from a dynamic performance standpoint. Finally, in order to demonstrate that the redesign framework yields solutions which the engineer can implement with confidence, we present the experimental verification of the numerical solution of a manipulator redesign optimization problem.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In