Influence of Varying Cam Profile and Follower Motion Event Types on Parametric Vibration and Stability of Flexible Cam-Follower Systems

[+] Author and Article Information
A. I. Mahyuddin, A. Midha

Elastic Mechanisms Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Mech. Des 116(1), 298-305 (Mar 01, 1994) (8 pages) doi:10.1115/1.2919362 History: Received June 01, 1990; Online June 02, 2008


A method to study parametric stability of flexible cam-follower systems, based on Floquet theory, as well as a closed-form numerical algorithm to compute periodic response of the system, have been developed in a companion paper. These are applied to an automotive valve train, modeled as a single-degree-of-freedom vibration system. The inclusion of the transverse and rotational flexibilities of the camshaft results in a system that is governed by a linear, second-order, ordinary differential equation with time-dependent coefficients. In this paper, the parametric stability of the system is studied, and the results are presented in the form of parametric stability charts. The regions of instability are plotted on the nondimensionalized frequency and excitation (amplitude) parameter plane. The maximum positional error of the follower motion, analyzed by the closed-form numerical algorithm, enables a novel presentation of three-dimensional stability and response charts. Stability of the system is investigated for three types of follower motion events and four different cam profiles. The effect of damping on parametric instability is also studied. A comparative study of these event and cam profile types reveals some very interesting and hitherto unknown results.

Copyright © 1994 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In