0
RESEARCH PAPERS

Study of Dominant Performance Characteristics in Robot Transmissions

[+] Author and Article Information
H. Schempf, D. R. Yoerger

Deep Submergence Laboratory, Dept. of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543

J. Mech. Des 115(3), 472-482 (Sep 01, 1993) (11 pages) doi:10.1115/1.2919214 History: Received June 01, 1991; Online June 02, 2008

Abstract

Six different transmission types suitable for robotic manipulators were compared in an experimental and theoretical study. Single-degree-of-freedom mechanisms based on the different transmissions were evaluated in terms of force control performance, achievable bandwidth, and stability properties in hard contact tasks. Transmission types considered were (1) cable reducer, (2) harmonic drive, (3) cycloidal disk reducer, (4) cycloidal cam reducer, (5) ball reducer, and (6) planetary/cycloidal gear head. Open loop torque following error, attenuation and phase lag, and closed loop bandwidth and stability margin were found to be severely dominated by levels of inertia, stiffness distribution and variability, stiction, coulomb and viscous friction, and ripple torque. These aspects were quantified and shown to vary widely among all transmissions tested. The degree of nonlinearity inherent in each transmission affected its open and closed loop behavior directly, and limited the effectiveness of controller compensation schemes. Simple transmission models based on carefully measured transmission characteristics are shown to predict stability margins and achievable force-control bandwidths in hard contact to within a 5 to 15 percent error margin.

Copyright © 1993 by The American Society of Mechanical Engineers
Topics: Robots
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In