RESEARCH PAPERS: Mechanisms Papers

The Workspace of a General Geometry Planar Three-Degree-of-Freedom Platform-Type Manipulator

[+] Author and Article Information
G. R. Pennock, D. J. Kassner

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

J. Mech. Des 115(2), 269-276 (Jun 01, 1993) (8 pages) doi:10.1115/1.2919187 History: Received June 01, 1991; Online June 02, 2008


This paper focuses on the direct workspace problems of a general geometry fully-parallel-actuated, planar three-degree-of-freedom platform-type manipulator. A set of equations are presented that determine the workspace as a function of the platform orientation. The formulation is governed by the solution to the inverse position problem of the manipulator. The reachable positions of the end-effector point, for a specified platform orientation, are analyzed. To illustrate the concepts, a practical example is included where the end-effector is required to move a cup filled with water. Then the platform orientation, for a specified location of the end-effector point, is studied. If an arbitrary orientation is possible, the specified location of the end-effector point is said to be within the primary workspace. The paper includes a detailed discussion of the total primary workspaces of the manipulator. The approach adopted here is to regard the manipulator as a combination of three planar, three-revolute open chains. For the sake of completeness, the influence of special manipulator geometry on the workspace is also discussed. Finally, the paper includes the conditions that cause stationary configurations of the manipulator. Insight into these undesirable configurations is provided by a study of the location of the absolute instant center of the platform.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In