0
RESEARCH PAPERS

Generic Models for Designing Dwell Mechanisms: A Novel Kinematic Design of Stirling Engines as an Example

[+] Author and Article Information
S. Kota

Department of Mechanical Engineering, University of Michigan, Ann Arbor MI 48109-2125

J. Mech. Des 113(4), 446-450 (Dec 01, 1991) (5 pages) doi:10.1115/1.2912803 History: Received March 01, 1988; Online June 02, 2008

Abstract

The desirable motion characteristics of mechanisms are so implicit that they are difficult to express analytically. Our design methodology involves development of generic design models through abstractions of entire emotion characteristics. We have developed a finite set of generic models (for straight-line, circular-arc, and dwell mechanisms) that represents the entire design space in the sense that a given design specification falls under at least one of the generic design models. This paper presents the generic design models for four-bar straight-line, circular arc, and six-bar dwell linkage mechanisms. The models presented here provide ready-made designs for many dwell applications. We have also presented a new concept in mechanisms design in which multiple coupler points on a four-bar linkage are used to drive different output dyads resulting in multiple dwell outputs. Finally, a new mechanism for the opposed piston stirling engine is presented to illustrate the use of generic design models and the application of a single-input controlling dual output motions with dwells.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In